

EEBus Initiative e.V.
Butzweilerhofallee 4
50829 Cologne
GERMANY

Rue d'Arlon 25
1050 Brussels
BELGIUM

Phone: +49 221 / 47 44 12 - 20
Fax: +49 221 / 47 44 12 - 1822

info@eebus.org
www.eebus.org

District court: Cologne
VR 17275

The EEBus concept was
developed as part
of E-Energy.

EEBus Technical Specification

Smart Home IP

Version 1.0.1

Cologne, 2019-11-04

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 2 of 96

Terms of use for publications of EEBus Initiative e.V.

General information

The specifications, particulars, documents, publications and other information provided by the EEBus Initiative e.V. are solely for general

informational purposes. Particularly specifications that have not been submitted to national or international standardisation organisations

by EEBus Initiative e.V. (such as DKE/DIN-VDE or IEC/CENELEC/ETSI) are versions that have not yet undergone complete testing and can

therefore only be considered as preliminary information. Even versions that have already been published via standardisation organisations

can contain errors and will undergo further improvements and updates in future.

Liability

EEBus Initiative e.V. does not assume liability or provide a guarantee for the accuracy, completeness or up-to-date status of any

specifications, data, documents, publications or other information provided and particularly for the functionality of any developments

based on the above.

Copyright, rights of use and exploitation

The specifications provided are protected by copyright. Parts of the specifications have been submitted to national or international

standardisation organisations by EEBus Initiative e.V., such as DKE/DIN-VDE or IEC/CENELEC/ETSI, etc. Furthermore, all rights to use and/or

exploit the specifications belong to the EEBus Initiative e.V., Butzweilerhofallee 4, 50829 Cologne, Germany and can be used in accordance

with the following regulations:

The use of the specifications for informational purposes is allowed. It is therefore permitted to use information evident from the contents

of the specifications. In particular, the user is permitted to offer products, developments and/or services based on the specifications.

Any respective use relating to standardisation measures by the user or third parties is prohibited. In fact, the specifications may only be

used by EEBus Initiative e.V. for standardisation purposes. The same applies to their use within the framework of alliances and/or

cooperations that pursue the aim of determining uniform standards.

Any use not in accordance with the purpose intended by EEBus Initiative e.V. is also prohibited.

Furthermore, it is prohibited to edit, change or falsify the content of the specifications. The dissemination of the specifications in a

changed, revised or falsified form is also prohibited. The same applies to the publication of extracts if they distort the literal meaning of

the specifications as a whole.

It is prohibited to pass on the specifications to third parties without reference to these rights of use and exploitation.

It is also prohibited to pass on the specifications to third parties without informing them of the authorship or source.

Without the prior consent of EEBus Initiative e.V., all forms of use and exploitation not explicitly stated above are prohibited.

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 3 of 96

Table of contents 1

Table of contents ... 3 2

List of figures ... 4 3

List of tables .. 4 4

Introduction ... 6 5

1 Scope ... 7 6

2 Normative References ... 8 7

3 Terms and Definitions ... 10 8

4 Architecture Overview .. 13 9

4.1 General Considerations On Closing Communication Channels ... 14 10

4.2 SHIP Node Parameters ... 14 11

5 Registration ... 16 12

5.1 Successful Registration .. 18 13

6 Reconnection ... 19 14

7 Discovery ... 20 15

7.1 Service Instance ... 20 16

7.2 Service Name ... 20 17

7.3 Multicast DNS Name .. 20 18

8 TCP ... 23 19

8.1 Limited Connection Capabilities .. 23 20

8.2 Online Detection .. 23 21

8.3 TCP Connection Establishment .. 24 22

8.4 Retransmission Timeout .. 24 23

9 TLS ... 25 24

9.1 Cipher Suites .. 25 25

9.2 Maximum Fragment Length... 26 26

9.3 TLS Compression .. 26 27

9.4 Server Name Indication ... 26 28

9.5 Renegotiation ... 26 29

9.6 Session Resumption ... 26 30

10 WebSocket .. 28 31

10.1 TLS Dependencies .. 28 32

10.2 Opening Handshake ... 28 33

10.3 Data Framing .. 28 34

10.4 Connection Keepalive .. 29 35

11 Message Representation Using JSON Text Format ... 30 36

11.1 Introduction ... 30 37

11.2 Definitions .. 30 38

11.3 Examples For Each Type ... 30 39

11.4 XML to JSON Transformation ... 31 40

11.5 JSON to XML Transformation ... 38 41

12 Key Management .. 39 42

12.1 Certificates ... 39 43

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 4 of 96

12.2 SHIP Node Specific Public Key .. 40 44

12.3 Verification Procedure ... 42 45

12.4 Symmetric Key ... 46 46

12.5 SHIP Node PIN .. 46 47

12.6 QR Code ... 47 48

13 SHIP Data Exchange ... 51 49

13.1 Introduction ... 51 50

13.2 Terms and Definitions .. 51 51

13.3 Protocol Architecture / Hierarchy .. 53 52

13.4 SHIP Message Exchange ... 55 53

14 Well-known protocolId .. 96 54

 55

List of figures 56

Figure 1: Physical Connections in the Overall System ... 13 57

Figure 2: SHIP Stack Overview ... 13 58

Figure 3: Full TLS 1.2 Handshake with mutual authentication .. 25 59

Figure 4: Quick TLS Handshake with Session Resumption .. 27 60

Figure 5: Easy Mutual Authentication with QR-codes and Smart Phone .. 46 61

Figure 6: QR Code Model 2, "low" ECC level, 0.33mm/Module, with SKI and PIN 49 62

Figure 7: QR Code Model 2, "low" ECC level, 0.33mm/module, with all values 50 63

Figure 8: Protocol Architecture and Hierarchy.. 54 64

Figure 9: CMI Message Sequence Example ... 59 65

Figure 10: Connection State "Hello" Sequence Example Without Prolongation Request: "A" 66

and "B" already trust each other; "B" is slower/delayed. ... 67 67

Figure 11: Connection State "Hello" Sequence Example With Prolongation Request.......................... 68 68

Figure 12: Connection State "Protocol Handshake" Message Sequence Example 75 69

Figure 13: Connection State "PIN verification" Message Sequence Example (Begin) 86 70

 71

List of tables 72

Table 1: SHIP Parameters Default Values .. 15 73

Table 2: Mandatory Parameters in the TXT Record .. 21 74

Table 3: Optional Parameters in the TXT Record .. 21 75

Table 4: Mapping from the XSD Types to JSON Types. ... 31 76

Table 5: Transformation of a simple type. .. 32 77

Table 6: Mapping from the XSD compositors to JSON Types. ... 32 78

Table 7: Examples for XML and JSON representations. .. 36 79

Table 8: Example transformation of several combined XSD item types. .. 37 80

Table 9: Example for JSON to XML transformation. .. 38 81

Table 10: User Trust .. 45 82

Table 11: PKI Trust ... 45 83

Table 12: Second Factor Trust ... 45 84

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 5 of 96

Table 13: MessageType Values ... 56 85

Table 14: Structure of SmeHelloValue of SME "hello" Message. .. 60 86

Table 15: Structure of SmeProtocolHandshakeValue of SME "Protocol Handshake" Message. 70 87

Table 16: Structure of SmeProtocolHandshakeErrorValue of SME "Protocol Handshake Error" 88

Message... 70 89

Table 17: Values of Sub-element "error" of messageProtocolHandshakeError. 74 90

Table 18: Structure of SmeConnectionPinStateValue of SME "Pin state" message. 76 91

Table 19: Structure of SmeConnectionPinInputValue of SME "Pin input" message. 77 92

Table 20: Structure of SmeConnectionPinErrorValue of SME "Pin error" message. 78 93

Table 21: Values of Sub-element "error" of connectionPinError. ... 85 94

Table 22: Structure of MessageValue of "data" Message. .. 88 95

Table 23: Structure of SmeConnectionAccessMethodsRequestValue of SME "Access methods 96

request" message. ... 91 97

Table 24: Structure of SmeConnectionAccessMethodsValue of SME "Access methods" 98

message. .. 92 99

Table 25: Structure of SmeCloseValue of SME "close" Message. ... 94 100

 101

 102

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 6 of 96

Introduction 103

Over the past decades, different home automation technologies have been created, which connect 104

devices using digital communication technologies. Most of these solutions bring along an 105

infrastructure of their own, like dedicated home automation wires. These approaches are acceptable 106

for commercial and industrial buildings, but they are too complex for private homes, especially if 107

retrofitting into already existing infrastructure is necessary. For these cases, wireless technologies 108

have been introduced to make installation easier. 109

In the meantime, even private homes have been expanded with IP (Internet Protocol) based 110

installations by home or flat owners. IP based devices fitting different consumer needs have become 111

increasingly popular over the past years. This means that most likely, a communication infrastructure 112

is already available in private households. Additionally, there are a lot of potential extensions to 113

other domains than just home automation, since smart phones, PCs, cloud communication, etc. 114

continuously broaden the horizon of possible applications. 115

However, there is a need for a secure standardized TCP/IP protocol based on requirements for the 116

next generation network within the Internet of Things (IoT). Things, in the IoT, can refer to a wide 117

variety of devices and will bring a lot of additional possibilities, e.g. within home automation, Smart 118

Grid, Smart Home or Ambient Assisted Living (AAL). 119

This specification describes an IP based approach for plug and play home automation, which can 120

easily be extended to additional domains. The solution is called SHIP (Smart Home IP), with the 121

communicating devices being called SHIP nodes. 122

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 7 of 96

1 Scope 123

This document describes an IP (Internet Protocol) based approach for machine-to-machine 124

communication. 125

It describes all relevant mechanisms between the Network Layer (layer 3) and Application Layer 126

(layer 7) based on the seven-layer ISO-OSI model. 127

The goal is to obtain a secure TCP/IP-based solution that allows interoperable connectivity between 128

different implementers and vendors. 129

Communication security is in line with the Smart Meter Gateway HAN (Home Area Network) 130

interface as described by the Federal Office for Information Security Germany (BSI) in TR-03109 131

Version 1.0, while also providing scalability, a high degree of usability, and efficient mechanisms for 132

simple devices. 133

Scalability an important design principle for SHIP, as a wide variety of devices should be addressed 134

within the SHIP-protocol. Simple devices with limited connection capabilities (worst case assumption: 135

only one simultaneous connection) or no or simple user interfaces (e.g. push button) shall be 136

enabled, as well as gateway or cloud solutions with enhanced capabilities. 137

To provide a future-proof solution, this specification also defines different mechanisms for 138

downward compatible extensibility. 139

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 8 of 96

2 Normative References 140

The following documents, in whole or in part, are normatively referenced in this document and are 141

indispensable for its application. For dated references, only the edition cited applies. For undated 142

references, the latest edition of the referenced document (including any amendments) applies. 143

IETF RFC 768: 1981, User Datagram Protocol 144

IETF RFC 793: 1981, Transmission Control Protocol 145

IETF RFC 1035: 1987, Domain Names 146

IETF RFC 2104: 1997, HMAC, Keyed-Hashing for Message Authentication 147

IETF RFC 2119: 1997, Key words for use in RFCs to indicate requirement levels 148

IETF RFC 3279: 2002, Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure 149

certificate and Certificate Revocation List (CRL) Profile 150

IETF RFC 3280: 2002, Internet X.509 Public Key Infrastructure Certificate Revocation List (CRL) Profile 151

IETF RFC 4055: 2005, The Additional Algorithms and Identifiers for RSA Cryptography for use in the 152

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile 153

IETC RFC 4627: 2006, The application/JSON Media Type for JavaScript Object Notation (JSON) 154

IETF RFC 5077: 2008, Transport Layer Security (TLS) Session Resumption without Server-Side State 155

IETF RFC 5234: 2008, Augmented BNF for Syntax Specifications: ABNF 156

IETF RFC 5246: 2008, The Transport Layer Security (TLS) Protocol Version 1.2 157

IETF RFC 5280: 2008, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation 158

List (CRL) Profile 159

IETF RFC 5289: 2008, TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode 160

(GCM) 161

IETF RFC 5480: 2009, Elliptic Curve Cryptography Subject Public Key Information 162

IETF RFC 5758: 2010, Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers 163

for DSA and ECDSA 164

IETF RFC 6066: 2011, Transport Layer Security (TLS) Extensions 165

IETF RFC 6090: 2011, Fundamental Elliptic Curve Cryptography Algorithms 166

IETF RFC 6298: 2011, Computing TCP's Retransmission Timer 167

IETF RFC 6455: 2011, The WebSocket Protocol 168

IETF RFC 6762: 2013, Multicast DNS 169

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 9 of 96

IETF RFC 6763: 2013, DNS-Based Service Discovery 170

IETF RFC 7320: 2014, URI Design and Ownership 171

ISO/IEC 18004:2015: Information technology — Automatic identification and data capture 172

techniques — QR Code bar code symbology specification 173

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 10 of 96

3 Terms and Definitions 174

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 175

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as 176

described in IETF RFC 2119. 177

 178

CA 179

Certificate Authority or Certification Authority. A CA can provide a digital signature for certificates. 180

Other SHIP nodes can check this digital signature with the certificate from the CA itself, the "CA-181

certificate". 182

Commissioning Tool 183

In the scope of SHIP, a commissioning tool may be used to establish the trust between different 184

devices in the smart home installation, e.g. distribute trustworthy credentials from some SHIP nodes 185

to other SHIP nodes. E.g. a smart phone, a web server or a dedicated device can embody the role of a 186

commissioning tool. So far, the SHIP specification does not specify a commissioning tool. An 187

interoperable protocol for commissioning can be used on the layer above SHIP. A manufacturer may 188

also use their own solutions. 189

DNS 190

Domain Name System, see IETF RFC 1035. 191

DNS host name 192

Fully qualified domain name used within DNS as host name to get the IP address of the 193

corresponding internet host. 194

DNS-SD 195

Domain Name System – Service discovery, see IETF RFC 6763. 196

EUI 197

Extended Unique Identifier, see http://standards.ieee.org/develop/regauth/tut/eui64.pdf . 198

Factory Default 199

A factory default SHALL allow the user to reset the SHIP node to the as-new condition. This means 200

that all data that has been provided and stored by the SHIP node during its operation time SHALL be 201

deleted. 202

IANA 203

Internet Assigned Numbers Authority. 204

IP 205

Internet Protocol. 206

LAN 207

Local Area Network. 208

http://standards.ieee.org/develop/regauth/tut/eui64.pdf

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 11 of 96

MAC 209

Media Access Control. 210

mDNS, multicast DNS host name 211

Fully qualified domain name used within mDNS as host name to get the IP address of the 212

corresponding local SHIP node. 213

Numerical representation 214

0x introduces the hexadecimal representation of an unsigned value. For example, 0xab represents a 215

decimal value of 171. 216

PIN 217

Personal Identification Number. This specification makes use of a PIN as secret for SHIP specific 218

verification procedures. 219

PKI 220

Public Key Infrastructure. 221

Push Button 222

The term Push Button is used to describe a simple trigger mechanism. A Push Button event does not 223

necessarily mean that a real physical button has to be used to trigger this event. A Push Button event 224

may also be generated by other means, e.g. via a smart phone application or a web-interface (secure 225

connection to SHIP node required). A Push Button shall provide a simple mechanism for a user to 226

bring the device to a certain state or start a certain process. 227

QR Code 228

The term "QR Code" is a registered trademark of DENSO WAVE INCORPORATED. "QR Code" is the 229

short form for "Quick Response Code" and used for efficient encoding of data into a small graphic. 230

Among others, the international standard ISO/IEC 18004:2015 specifies the encoding of QR code 231

symbols. 232

RFC 233

Request for comments. 234

SHIP 235

Abbreviation of "Smart Home IP". This term is used throughout this document to refer to the 236

described communication protocol. 237

SHIP ID 238

Each SHIP node has a globally unique SHIP ID. The SHIP ID is used to uniquely identify a SHIP node, 239

e.g. in its service discovery. This ID is present in the mDNS/DNS-SD local service discovery; see 240

chapter 7. 241

SHIP Client 242

The SHIP client role shall be assigned to the SHIP node that also embodies the TCP client role for a 243

specific peer-to-peer connection. 244

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 12 of 96

SHIP Node 245

A SHIP node is a logical device which communicates via the described SHIP protocol and can be 246

integrated into a web server or physical device. 247

Note: One physical device may have more than one logical SHIP node. In this case, each SHIP node 248

MUST use distinct ports (e.g. a physical device provides 3 open ports with 3 different SHIP services). 249

SHIP Server 250

The SHIP server role shall be assigned to the SHIP node that also embodies the TCP server role for a 251

specific peer-to-peer connection. 252

SKI 253

Each SHIP node has a specific public key. The Subject Key Identifier (SKI) is derived from this public 254

key and is used as a cryptographically backed identification and authentication criterion. 255

SPINE 256

Smart Premises Interoperable Neutral message Exchange: Technical Specification of EEBus Initiative 257

e.V. 258

Trusted SHIP Node 259

A trusted SHIP node is a term which is only applicable from a specific SHIP node point of view. 260

If SHIP node A has a communication partner and a trusted relationship to SHIP node B, SHIP node B is 261

called a trusted SHIP node from SHIP node A's point of view. A trusted relationship can be 262

established in different ways, as described in chapter 12.2.2. 263

UCS 264

Universal Character Set. 265

UTF 266

UCS Transformation Format. A computing industry standard for the consistent encoding, 267

representation, and handling of text expressed in most of the world's writing systems. 268

WAN 269

Wide Area Network. 270

Web server based SHIP node 271

A SHIP node that is hosted by a web server. 272

WiFi 273

IP networks based on the IEEE802.11 set of standards, used for wireless IP communication. 274

 275

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 13 of 96

4 Architecture Overview 276

Smart Home IP (SHIP) describes an IP-based approach for interoperable connectivity of smart home 277

appliances, which covers local SHIP nodes in the smart home as well as web server based SHIP nodes 278

and remote SHIP nodes. 279

 280

Figure 1: Physical Connections in the Overall System 281

SHIP nodes MAY base on different physical layer approaches, e.g. WiFi or powerline technologies. An 282

IP router can be used to connect different physical networks and provide access to the internet, but 283

this is out of the scope of the SHIP specification. 284

On the IP Layer, IPv4 as well as IPv6 are permitted. IP addresses can be preconfigured, assigned via 285

DNS-server, with SLAAC, or by any other appropriate means. 286

 287

Figure 2: SHIP Stack Overview 288

A SHIP node SHALL support mDNS/DNS-SD for local device/service discovery. The SHIP protocol is 289

based on TCP, TLS and WebSocket. 290

Note: Computationally limited SHIP nodes MAY only support a limited number of connections. For 291

further information see chapter 8.1. 292

Note: A SHIP node MUST always provide a server port. Only a SHIP node that supports only one 293

simultaneous active connection MAY close the server port in order to establish a client connection. 294

In SHIP, it is not important which SHIP node takes over the server or client role. If two SHIP nodes try 295

to connect to each other virtually simultaneously, double connections are prevented by the 296

mechanism described in chapter 12.2.2. 297

SHIP
Webservice 1

WAN
SHIP

Webservice 2

IPv4/IPv6
Router

SHIP node 2

SHIP node 3

SHIP node 4

SHIP node 5

e.g. LTE

e.g. WiFi

SHIP node 1

SHIP message exchange key color:

Websockets SHIP

OSI 5-7 mDNS TLS

OSI 4 UDP TCP

OSI 3 IPv4/IPv6/IPv6 6LoWPAN

IEEE 802.15.4 Wifi, GreenPhy, Ethernet

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 14 of 96

SHIP specific messages conveyed over the established WebSocket connection shall be encoded using 298

JSON, like described in chapter 11. 299

As the SHIP specification is defined by members of the EEBus Initiative e.V., it can be used to 300

transport EEBus-specific payload and provide an EEBus IP-Backbone, but also other protocols can be 301

used above SHIP. To provide a clean solution, SHIP is defined without dependencies to the EEBus 302

data model. 303

4.1 General Considerations On Closing Communication Channels 304

In general, different manufacturers will favour different strategies on opening and closing 305

communication channels. Some manufacturers will choose to leave communication channels open as 306

long as possible, while others will choose to close communication channels as soon as possible. In 307

practice, limitations of the number (or duration) of supported parallel connections might force 308

connections to be closed at least temporarily. Thus, a termination process is defined in order to 309

distinguish sudden interrupts or failures from (typically) temporary disconnections. Details are 310

explained in section 13.4.7. 311

4.2 SHIP Node Parameters 312

Throughout this specification, different parameters are defined to provide an exact description of the 313

SHIP behaviour where needed. The different parameters are summarized in the following list. Please 314

go to the corresponding chapter for a detailed description. 315

Description Chapter Default value range Default value

recommendation

Initial TCP retransmission count 8.3

2

Initial TCP retransmission timeout 8.4

1s

Maximum TCP retransmission

timeout

8.4

120s

MTU (Maximum Transmission Unit) 8 1500 bytes

Maximum fragment length 9.2 512 bytes

Connection Keepalive "ping" min

interval

10.4 50s

Connection Keepalive "pong"

timeout

10.4 10s

SKI length 12.2 20 bytes (40 digit

hexadecimal string)

PIN length 12.5 8-16 digit hexadecimal string

Maximum "auto_accept" time

window

12.3.1.1 ≤120s 60s

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 15 of 96

Description Chapter Default value range Default value

recommendation

"User trust level" necessary for

general SHIP communication

12.3.2 ≥8

"User trust level" or "second factor

trust level" necessary for

commissioning

12.3.2 ≥32

CmiTimeout 13.4 10-30s 30s

Wait-For-Ready-Timer initial 13.4.4.1 60-240s 120s

Wait-For-Ready-Timer prolongation 13.4.4.1 60-240s 120s

PIN entry penalty after the 3rd

invalid attempt

13.4.4.3 10-15s 15s

PIN entry penalty after the 6th

invalid attempt

13.4.4.3 60-90s 90s

Table 1: SHIP Parameters Default Values 316

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 16 of 96

5 Registration 317

The registration of a SHIP node can be triggered by different mechanisms, e.g., a push button ("auto 318

accept", as described in chapter 12.3.1.1), a commissioning tool ("commissioning" as described in 319

chapter 12.3.1.3) or if an SKI is entered or verified by the user ("user input" or "user verify" as 320

described in chapters 12.3.1.4 and 12.3.1.2). 321

Note: Details on how to find appropriate SHIP nodes are explained in chapter 7 where you can also 322

find details on "register" flags and "SKI" values. 323

Registration with secure verification: 324

Sections 12.3.1.2 (user verification), 12.3.1.3 (commissioning), and 12.3.1.4 (user input) 325

describe verification modes with the possibility to trust the SKI value of another SHIP node. 326

For these modes, a SHIP node SHALL search for SHIP nodes with trusted SKI values and 327

connect to them to establish the registration. If the registration with a SHIP node does not 328

complete successfully (see section 5.1 for successful registration), the SHIP node SHALL 329

cyclically retry to connect to the SHIP node with the corresponding SKI. 330

If the other local SHIP node aborts the SME "hello", as described in chapter 13.4.4.1, a SHIP 331

node SHOULD NOT retry to connect to this SHIP node again as long as the register flag of the 332

other SHIP node is set to "false". If the register flag of the other SHIP node is set to "true", a 333

SHIP node that already has the trusted SKI from the other SHIP node SHALL retry to connect 334

to the other SHIP node again. 335

 336

Registration with auto accept: 337

If the "auto accept" mode is active, as described in chapter 12.3.1.1, a SHIP node SHALL set 338

its own register flag for the service discovery to true. Additionally, the SHIP node SHALL start 339

a service discovery for other SHIP nodes that have set the register flag to true. 340

Note: If both SHIP nodes use the "auto accept" mode to connect to each other, this is called 341

mutual "auto accept". In the case of mutual "auto accept", no side verifies any SKI and 342

therefore a so-called "man-in-the-middle" attack cannot be excluded. In the "man-in-the-343

middle" case, a third device (the "man in the middle", a potentially harmful device) is able to 344

secretly read and even manipulate the communication between two SHIP nodes. Therefore, 345

it is STRONGLY RECOMMENDED to support at least one of the other verification modes to 346

avoid mutual "auto accept" and potential "man-in-the-middle" attacks! 347

If a SHIP node discovers more than one other SHIP node with a "register" flag set to true, it 348

SHALL pick one SHIP node by any means appropriate (e.g., it could interpret additional 349

information contained in the service discovery). 350

If the "auto accept" mode is inactive, a SHIP node SHALL set its own "register" flag for the 351

service discovery to false and SHALL stop searching for other SHIP nodes that also have set 352

the "register" flag to "true". 353

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 17 of 96

 354

Note: Only "auto accept" affects the register flag. The other verification modes ("user verify", "user 355

input" and "commissioning") SHALL have no effect on the register flag. 356

The registration between a SHIP node and a web server based SHIP node is established in the 357

following order: 358

1. Retrieve IP address and port number from DNS (only if URL/ DNS host name is used; if IP 359

address is used, this step can be skipped) 360

2. Connect to IP address and port number 361

3. Verify public key of the web server-based SHIP node, as described in chapter 12.3 362

4. SHIP message exchange (SME) Connection Mode Initialization 363

5. SHIP message exchange (SME) Connection Data Preparation 364

The registration with another local SHIP node is established in the following order: 365

1. If "auto accept" is active, set register flag in service discovery to "true"; otherwise, it must be 366

set on "false". 367

2. If "auto accept" is used and the other SHIP node has set the register flag in service discovery 368

to true, it is strongly recommended to switch to another verification mode to prevent mutual 369

"auto accept". If "user verify", "user input" or "commissioning" is used, search for SHIP nodes 370

with corresponding SKI values in the service discovery. 371

3. Connect to IP address and port number retrieved via service discovery or accept incoming 372

connection. 373

4. Verify public key of the communication partner as described in chapter 12.3 374

5. SHIP message exchange (SME) Connection Mode Initialization 375

6. SHIP message exchange (SME) Connection Data Preparation 376

With the SME "hello" message, a SHIP node can confirm the trustworthiness of the communication 377

partner as described in chapter 13.4.4.1. If a SHIP node trusts the communication partner, the SHIP 378

node SHALL store the credentials of the communication partner. 379

Note: If a SHIP node only supports one simultaneous active connection, it MAY close the server port 380

during the registration phase in order to be able to establish a client connection. In this case, the 381

constrained SHIP node SHALL wait a time of X milliseconds before it closes the server port and tries 382

to establish a connection to another SHIP node that has the register flag in service discovery set to 383

"true". X SHOULD be a random value between 0-30000 milliseconds. 384

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 18 of 96

5.1 Successful Registration 385

When both sides have confirmed trustworthiness of each other with an SME "hello" message, the 386

registration is successfully completed. Every new connection between these two devices MUST now 387

be viewed as reconnection and not a registration until one of both SHIP nodes purposely aborts the 388

SME "hello" handshake. 389

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 19 of 96

6 Reconnection 390

If two SHIP nodes have successfully established a connection before, both nodes can reconnect to 391

each other at any time. It does not matter if the register flag is "true" or "false" during reconnection 392

– the register flag is only important for the registration process when connecting to new SHIP nodes 393

(see chapter 5). 394

If the public key still matches the previously (during registration) provided, verified and trusted public 395

key, the SHIP node SHALL be accepted again without any delay. 396

A reconnection between a SHIP node and a web server-based SHIP node is established in the 397

following order: 398

1. Retrieve IP address and port number from DNS (only if URL / DNS host name is used; if IP 399

address is used, this step can be skipped) 400

2. Connect to IP address and port number 401

3. Check if the public key of the communication partner is still the same as during registration 402

4. SHIP message exchange (SME) 403

A reconnection with a local SHIP node is typically established in the following order: 404

1. Connect to IP address and port number retrieved via service discovery or accept incoming 405

connection 406

2. Check if the public key of the communication partner is trusted and still the same as during 407

registration 408

3. SHIP message exchange (SME) 409

In the reconnection scenario, both SHIP nodes should already trust each other, so no user interaction 410

is necessary. With the SME "hello" message, a SHIP node can directly confirm the trustworthiness of 411

the communication partner as described in chapter 13.4.4.1 and continue with SME protocol 412

handshake, optional PIN verification, and data exchange as described in chapter 13.4. 413

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 20 of 96

7 Discovery 414

A discovery mechanism is used to find available SHIP nodes and their services in the local network 415

without knowing their multicast DNS host names or IP addresses. For this purpose, mDNS/DNS-SD 416

SHALL be used. 417

DNS-SD records SHOULD have a TTL of 2 minutes. 418

mDNS/DNS-SD provides methods for local service discovery, resource discovery, and multicast DNS 419

host name to IP address resolution. Detailed information on mDNS can be found in RFC 6762; 420

information on DNS-SD can be found in reference RFC 6763. 421

A SHIP node that uses mDNS SHALL offer a service named "ship". 422

7.1 Service Instance 423

The SHIP node SHALL assign an <Instance> label of up to 63 bytes in UTF-8 format for each DNS 424

SRV/TXT record pair that it advertises. In accordance with RFC 6763 and in order to avoid name 425

conflicts, this label SHALL use user-friendly and meaningful names, for example the device type, 426

brand and model. Using a hypothetical company "ExampleCompany", an example <Instance> of a 427

product with a SHIP node could be "Dishwasher ExampleCompany EEB01M3EU". 428

Should a name conflict still occur, a node SHALL assign itself a new name until the conflicts are 429

resolved. A conflict SHOULD be resolved by appending a decimal integer in parentheses to the 430

<Instance> (for example, "Name(2)" for the first conflict, "Name(3)" for the second conflict, etc.). 431

7.2 Service Name 432

The service name used with DNS-SD SHALL be "ship". 433

The <Service> portion of a service instance name consists of the service name preceded by an 434

underscore '_' and followed by a period '.' plus a second DNS label specified by SHIP as "_tcp". 435

Thus, a valid service instance name example would be: 436

"Dishwasher ExampleCompany EEB01M3EU._ship._tcp.local." 437

where "Dishwasher ExampleCompany EEB01M3EU" is the <Instance> portion (described in 438

previous section), "ship" is the service name, "tcp" is the transport protocol, and "local" is the 439

<Domain> portion. 440

7.3 Multicast DNS Name 441

A local SHIP node SHALL assign a unique multicast DNS host name of up to 63 bytes. In order to avoid 442

name conflicts, names SHOULD use the unique ID as specified in the TXT record. 443

Thus, a complete multicast DNS host name example would be: 444

"EXAMPLEBRAND-EEB01M3EU-001122334455.local." 445

7.3.1 Default Records 446

DNS-SD defines several records by default. This information MUST NOT be included in other records. 447

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 21 of 96

The A record includes the IPv4 address and the AAAA record includes the IPv6 address of the node. 448

The SRV record SHALL include the service name, multicast DNS host name and port. 449

Note: A SHIP node MAY freely choose its port for the SHIP TCP server, but MUST state it correctly in 450

the SRV record. 451

7.3.2 TXT Record 452

This sub-section specifies the format of the TXT record to be used in conjunction with DNS-SD. A SHIP 453

node SHALL use a single TXT record format. The TXT record SHALL NOT exceed 400 bytes in length. 454

The following table contains additional service parameters that SHALL be included in the TXT record. 455

Key Value Example Runtime

Behavior

Required

txtvers Version number txtvers=1 Static Mandatory

id Identifier id=EXAMPLEBRAND-

EEB01M3EU-001122334455

Static Mandatory

path String with wss path path=/ship/ Static Mandatory

ski 40 byte hexadecimal

digits representing the

160 bit SKI value

ski=1234AAAAFFFF1111

CCCC3333EEEEDDDD

99992222

Static Mandatory

register Boolean register=true Static Mandatory

Table 2: Mandatory Parameters in the TXT Record 456

The TXT record can include other optional key-values as long as the TXT record does not exceed 400 457

bytes in length. The following optional keys are defined by this specification: 458

Key Value Example Runtime

Behaviour

Required

brand String with brand brand=ExampleBrand Static Optional

type String with device type type=Dishwasher Static Optional

model String with model model=EEB01M3EU Static Optional

Table 3: Optional Parameters in the TXT Record 459

txtvers SHALL be the first key in the TXT record. For this specification, the value of the txtvers 460

key SHALL be 1. If it is found in a response to be other than 1, the TXT record SHALL be ignored. The 461

txtvers key SHALL be present with a non-empty value. Clients SHALL silently discard TXT records 462

with txtvers keys that are not present or have a different value than 1. 463

Unknown key pairs in a response SHALL be ignored. 464

The id, ski, brand, type and model values SHALL be in UTF-8 format. 465

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 22 of 96

The value of the id key contains a globally unique ID of the SHIP node and has a maximum length of 466

63 bytes. The first part of the unique ID SHOULD be an abbreviation of the manufacturer name. 467

Behind the abbreviation, the manufacturer defines a unique identifier. The id value (SHIP ID) shall be 468

unique. Note: The presence of two SHIP nodes with identical id values in a local network is not 469

considered a regular setup within this specification as it may disrupt regular SHIP communications. 470

The maximum length of the brand, type and model values will be 32 byte of UTF-8 data each. 471

The maximum length of the path value will be 32 bytes of UTF-8 data. The minimum length is 1, 472

where the path key contains the value "/". 473

The ski key allows other SHIP nodes to directly identify a SHIP node by its SKI. This is very helpful for 474

other SHIP nodes that were provided with one or more trustworthy SKI values from other SHIP nodes 475

via "commission tool", "user verification" or "user input". Otherwise, trial-and-error TLS handshakes 476

with all nodes would be necessary to find the nodes with the fitting public key / SKI. Also, SHIP nodes 477

that support "user verify" do not need to gather SKIs from local SHIP nodes over a TLS handshake, 478

but can gather the SKIs simply via service discovery. 479

An SKI with the value 0x1234AAAAFFFF1111CCCC3333EEEEDDDD99992222 480

SHALL be encoded as ski=1234AAAAFFFF1111CCCC3333EEEEDDDD99992222. 481

The register key is used to indicate whether auto accept is active in the SHIP node. 482

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 23 of 96

8 TCP 483

TCP SHALL be used for communication. A communication over UDP, apart from mDNS for service 484

discovery, is not specified at the moment, but might be added later for multicast and group 485

communication scenarios. 486

The MTU size SHALL NOT exceed 1500 bytes. 487

For a local server, the port SHALL be set according to the DNS-SD SRV record, as described in chapter 488

7.3.1. 489

8.1 Limited Connection Capabilities 490

A SHIP node MUST support a minimum of "1" simultaneously active connection. 491

If a local SHIP node is limited to "1" simultaneously active connection, it SHALL provide a listening 492

TCP server and SHALL only close the TCP server port if it wants to establish a connection to another 493

SHIP node as a TCP client. After using a TCP client connection, it SHALL close the TCP client 494

connection as soon as possible and start listening on the TCP server port again. 495

If a SHIP node supports more than "1" simultaneously active connection, it SHALL always reserve one 496

connection for the TCP server port. This means that when the SHIP node is limited to "x" 497

simultaneously active connections, it SHALL only use a maximum of "x-1" connections for TCP client 498

connections. 499

If a SHIP node supports more than "1" simultaneously active connection, it SHALL always reserve one 500

connection for TCP client connections. This means that when the SHIP node is limited to "x" 501

simultaneously active connection, it SHALL only use a maximum of "x-1" connections for TCP server 502

connections. 503

In general, a SHIP node MAY close the TCP server port when it has reached its connection limit. In 504

this case, the SHIP node SHALL reopen the TCP server port as soon as possible. If a SHIP node has not 505

reached its connection limit, it SHALL always have an open TCP server port. 506

8.2 Online Detection 507

Before a local SHIP node can try to establish a connection over TCP to another local SHIP node, the 508

other SHIP node SHOULD be detected as "online". 509

If the TTL of the mDNS service announcement of a local SHIP node is not valid, this SHIP node 510

SHOULD be interpreted as "offline". If the mDNS service announcement of the corresponding local 511

SHIP node is updated and the TTL is valid, the SHIP node SHALL be interpreted as "online" again. 512

In addition, a local SHIP node MAY send ICMP echo requests (Pings) to another local SHIP node to 513

check whether the other side is "online" or "offline". 514

Note: In certain environments or devices, ICMP echo requests/replies MAY be blocked. If a local SHIP 515

node is unable to receive an ICMP echo reply, but mDNS service announcements are received from 516

the other local SHIP node, the SHIP node SHALL consider the other SHIP node as subject to ICMP 517

blocking. In this case, the local SHIP node SHALL NOT use the ICMP echo requests as an indicator for 518

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 24 of 96

the "offline" state and SHOULD only rely on the TTL of the mDNS service announcement as "offline" 519

indicator. 520

Note: The "offline" detection is especially important for local SHIP nodes with limited connection 521

capabilities. Trying to reach a SHIP node B that is "offline" can cost SHIP node A 10 seconds of 522

connection time, see 8.3. This means that other SHIP nodes may not be able to reach this SHIP node 523

A for about 10 seconds while it is trying to establish a connection with SHIP node B that is offline. 524

8.3 TCP Connection Establishment 525

As described in RFC 793, an initial SYN packet is sent from the client to the server to initiate a TCP 526

connection. When a server accepts the incoming connection, it responds with an acknowledgment of 527

the SYN packet (SYN ACK). When a SHIP server receives a SYN packet for a closed port, it SHALL 528

respond with a reset (RST) packet as described in chapter 3.4 / page 36 of RFC 793. Furthermore, the 529

RST packet SHOULD not be blocked or filtered out, e.g. by a firewall, on the SHIP node. 530

The usage of the RST packet allows SHIP clients to very quickly detect whether the server port of the 531

other SHIP node is closed. In that case, the connecting SHIP node can immediately abort the 532

connection attempt. This also reduces the usage time of TCP connections, which can be of high 533

importance for constrained devices, as TCP connections may be a limited resource, as described in 534

section 8.1. 535

As the SYN packet as well as the RST packet may get lost, the initial SYN packet SHOULD be 536

retransmitted twice if no response (e.g. an ACK or RST) is received. If the recommended timeouts 537

from section 8.4 are used, this results in a maximum connection establishment duration of: 538

1 + 3 + 6 = 10 seconds 539

8.4 Retransmission Timeout 540

A SHIP node SHOULD maintain a retransmission timer as defined by RFC 6298. For that, round-trip 541

times (RTT) of transmitted packets are measured. The RTT means the time from sending a packet to 542

receiving the corresponding acknowledge (ACK). Retransmitted packets MUST NOT be used for 543

measuring, because in that case an ACK cannot be uniquely assigned to a sent packet anymore. 544

From the measured values, a retransmission timeout (RTO) is calculated, which is used for 545

subsequent transmissions of packets. RFC 6298 recommends a minimum RTO value of 1 second. 546

Nonetheless, it also points out that this is a conservative value and it will most likely make sense to 547

reduce it in the future. Thus, a SHIP node MAY reduce the minimum RTO value. 548

For the initial SYN packet, the value of the RTO SHOULD be initialized with 1 second as also 549

recommended by RFC 6298. RFC 6298 appendix explains why this has been reduced from the 550

historical value of 3 seconds. A SHIP node MAY choose to increase this value for lossy networks. 551

After the first retransmission of a packet, RFC 6298 demands to set the RTO to a minimum of the 552

historical value of 3 seconds. Then, an exponential back-off is applied, which doubles the RTO with 553

every retransmission. A SHIP node SHOULD apply a maximum RTO value of 120 seconds. 554

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 25 of 96

9 TLS 555

TLS 1.2 is MANDATORY. Apart from the maximum fragment length, see 9.2, TLS MUST be used as 556

specified in RFC 5246. 557

SHIP nodes MUST use mutual authentication during the TLS 1.2 Handshake, hence the public key / 558

certificate MUST be verified on the client and server side, as described in chapter 12.2.2. 559

 560

Figure 3: Full TLS 1.2 Handshake with mutual authentication 561

9.1 Cipher Suites 562

The TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite, as specified in RFC 5289, MUST 563

be supported. 564

OPTIONAL cipher suites are: 565

• TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 566

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 567

Hence, ECDSA is used for authentication and ECDHE for key exchange with perfect forward secrecy. 568

The algorithms are based on ECC because the computational costs are lower than for e.g. RSA with 569

similar security. 570

As ECC curve, secp256r1 curve MUST be used; other curve sets are not allowed at this time. 571

Secp256r1 is widely supported by different solutions and libraries; other curves might be added later. 572

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 26 of 96

9.2 Maximum Fragment Length 573

Maximum Fragment Length Negotiation Extension, as specified in RFC 6066, SHOULD be supported. 574

If used, Maximum Fragment Length Negotiation Extension SHALL only support a length of 1024 575

bytes. This keeps the required buffer size for embedded devices low. 576

Some TLS implementations currently do not support Maximum Fragment Length Negotiation 577

Extension. Therefore, a SHIP node SHALL ensure that the fragment length (TLSPlaintext.length) of 578

outgoing packets does not exceed 1024 bytes, even if Fragment Length Negotiation Extension is not 579

supported. 580

9.3 TLS Compression 581

TLS Compression MUST NOT be used. 582

9.4 Server Name Indication 583

As specified by WebSocket in RFC 6455, the server name indication (SNI) extension MUST be 584

supported However, local SHIP nodes SHALL ignore the information provided by the SNI extension. 585

Web server-based SHIP nodes MAY evaluate the SNI extension if they have a fixed DNS host name. 586

For local connections, the server name SHALL be equal to the mDNS host name of the local server. 587

For web server connections, the server name SHALL be the DNS hostname of the webserver. 588

Note: As described in RFC6066, the server name for SNI is represented as a byte string using ASCII 589

encoding without a trailing dot. This means that even if the server name in mDNS might have a 590

trailing dot, this trailing dot should not be used for SNI. However, some web browsers seem to use 591

the trailing dot for SNI in the client hello due to an incorrect implementation. Therefore, a SHIP 592

server implementation SHOULD ignore the last trailing dot if it is mistakenly inserted by the client. 593

9.5 Renegotiation 594

As the usage of TLS Renegotiation is not defined within SHIP, a SHIP node SHALL NOT support TLS 595

renegotiation and refuse TLS renegotiation requests in general. 596

9.6 Session Resumption 597

A full TLS 1.2 handshake introduces large computational costs and additional round trips. From a user 598

perspective, these computational costs can lead to delays in reaction time > 1 second for constrained 599

devices. To allow fast reconnections over TLS without the need for a full TLS handshake, session 600

resumption SHOULD be supported. This means that the session state holding the master secret and a 601

session id SHOULD be stored and reused during reconnections. 602

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 27 of 96

 603

Figure 4: Quick TLS Handshake with Session Resumption 604

A SHIP node MAY discard a session state, e.g. if the connection has low requirements regarding the 605

latency and reaction time, if the connection was not used for a certain amount of time, or if there is 606

no more space for storage left and a new connection is established that is rated with a higher 607

priority. 608

Note that discarding the session state always forces a full TLS handshake when the connection is re-609

established. 610

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 28 of 96

10 WebSocket 611

On top of TCP and TLS, WebSocket MUST be used. One of the goals achieved by using WebSocket is 612

the ability of the protocol to maintain connections through local network gateways such as Network 613

Address Translation (NAT) devices or firewalls. 614

Note that a number of "draft versions" of the WebSocket standard exist that are incompatible with 615

the current standard. Therefore, this specification requires strict compliance with RFC 6455. 616

10.1 TLS Dependencies 617

A SHIP node client MUST use the Server Name Indication extension in the TLS handshake (RFC 6066). 618

This is especially important for large-scale service providers such as cloud installations to be able to 619

provide services for various server names. Please see section 9.4 for more details. 620

10.2 Opening Handshake 621

This section refers to sections 1.3 (non-normative) and 4 in RFC 6455. 622

Valid WebSocket Request-URIs for use with SHIP MUST follow the wss scheme (i.e., a valid SHIP URI 623

will always start with "wss://") if TLS is used. This specification does not make any assumptions on 624

the host, port and resource name properties of the request. A SHIP node will learn these properties 625

via the SHIP discovery process as described in chapter 7. If a SHIP node decides to connect to another 626

SHIP node, it SHALL present these properties in the exact same fashion as previously discovered. 627

The origin property MAY not be present in the request. 628

Each WebSocket request conforming to this specification MUST include the Sec-WebSocket-Version 629

header with a fixed value of 13. Earlier WebSocket draft standard versions are not allowed. 630

Additionally, the value "ship" MUST be included in the Sec-WebSocket-Protocol header. 631

With this procedure, a SHIP node SHALL detect whether it is talking to another SHIP node at the 632

earliest stage possible, preventing the overhead of useless communication with other SHIP nodes 633

that implement the WebSocket protocol, but without the SHIP payload. The request MUST NOT 634

contain any other subprotocol names. 635

The current version of this document does not specify any WebSocket extensions. Therefore, the 636

request MUST NOT contain a Sec-WebSocket-Extensions header. 637

10.3 Data Framing 638

This section refers to section 5 in RFC 6455. 639

SHIP protocol messages are at least partially binary. Therefore, all data frames (i.e. non-control 640

frames) used with this specification MUST be of type 0x2 (binary frames). A SHIP node that receives a 641

data frame with another type (0x1) MUST terminate the connection with status code 1003 642

(unacceptable data). A SHIP node that receives a data frame with type (0x3–0x7, 0xB-0xF) MUST 643

terminate the connection with status code 1002 (protocol error). 644

Since this specification does not allow any extensions, the reserved bits of the base framing protocol 645

MUST be set accordingly (to value 0) and the reserved opcodes in the framing header MUST NOT be 646

used. 647

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 29 of 96

For clarity, please note that while RFC 6455 requires clients to support fragmentation of messages 648

and to support handling control frames in the middle of a fragmented message, it explicitly forbids 649

interleaving of fragments belonging to different messages. The absence of SHIP protocol message 650

interleaving ("multiplexing") is not considered a relevant issue at the moment since SHIP protocol 651

messages are expected to be relatively small (i.e., their transmission on a typical IP layer will only 652

take a few milliseconds). 653

10.4 Connection Keepalive 654

A SHIP WebSocket connection SHALL be left established whenever local resource usage on the SHIP 655

node permits this behaviour to reduce delay and reaction times of SHIP nodes. 656

In wide-area networking scenarios (e.g. for Cloud services), connections can typically only be 657

established from a local SHIP node towards a remote one and not vice versa (i.e., only from the local 658

device towards the Cloud, not vice versa because of a local firewall or NAT gateway). In this case, 659

keeping up the connection is vital to be able to receive messages from the Cloud at any given time. 660

Furthermore, large-scale deployments might need to deploy fail-safe algorithms to detect server 661

failures and re-route traffic to other nodes. A server failure may be detected quickly when using 662

keep-alive connections, and re-routing will then usually occur before the connection is really needed 663

for the next payload message, improving overall protocol resilience and user experience. 664

In addition to keeping connections alive whenever possible, a SHIP node SHALL make use of the ping 665

and pong control frames to ensure that the underlying transport is really operational. 666

A SHIP node MUST NOT send ping messages at intervals smaller than 50 seconds on a single 667

connection. The typical timeout waiting period for a pong message after sending a ping message 668

SHALL be 10 seconds. 669

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 30 of 96

11 Message Representation Using JSON Text Format 670

11.1 Introduction 671

Many SHIP messages are sent using a JSON-UTF8 representation as a basis. However, the SHIP 672

protocol is prepared to allow other formats, such as JSON-UTF16 or ASN.1. 673

For different reasons, which are beyond the scope of this document, some parts of the messages are 674

defined using XSD (XML Schema Definition). This language permits the description of XML structures 675

and content for specific purposes. Several tools can be found that permit creation of XMLs or even 676

so-called "data binders" from XSDs. 677

JSON, or Java Script Object Notation, like XML, is an interchange format to describe data objects. It 678

has beendescribed in RFC 4627 since 2006. Because of its small set of formatting rules, it is easy to 679

implement. Code for parsing and generating JSON is available in most programming languages. 680

In order to benefit from the advantages of XSD and JSON, this chapter describes which JSON types 681

must be used and how to generate JSON text representations from the XSD. In general, it is rather 682

difficult to map every feature of an XML to a corresponding JSON representation. However, there are 683

some ways to retain the semantics of most XSD elements. 684

11.2 Definitions 685

JSON consists of six basic types. 686

1. Number 687

2. String (double-quoted) 688

3. Boolean 689

4. Array (ordered sequence) 690

5. Object (unordered collection) 691

6. Null 692

The data representation consists of key:value pairs and is built on two structures: An unordered 693

collection surrounded by left and right curly brackets or an ordered sequence surrounded by square 694

brackets. The members inside the structures are separated by commas. 695

11.3 Examples For Each Type 696

1. Number 697

{"age" : 12, "height" : 1.73} 698

2. String (double-quoted) 699

{"name" : "JSON in WebSocket"} 700

3. Boolean 701

{"checked" : true} 702

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 31 of 96

4. Array (ordered sequence) 703

{"item" : ["one", "two", "three"]} 704

5. Object (unordered collection) 705

{"Name" : "Crockford", "First name" : "Douglas"} 706

6. Null 707

{"nillable" : null} 708

11.4 XML to JSON Transformation 709

11.4.1 Scope 710

The transformation rules in this chapter apply to all data structures in section 13.4 that are explicitly 711

defined using XSD. These structures are called "explicit SHIP structures". 712

The SHIP Message Exchange permits conveying payload of an external (i.e. non-SHIP) specification 713

within the element "data.payload" (see section 13.4.5.2). The corresponding specification is 714

announced using the element "protocolId". An external specification MAY apply the specific 715

conversion rules of this chapter as well. For each protocolId, it is permitted to define deviating rules 716

for the content of "payload". 717

11.4.2 XSD Types 718

The mapping of XSD types is described in Table 4. 719

XSD types JSON types

xs:boolean Boolean

xs:double, xs:byte, xs:unsignedByte, xs:short,

xs:unsignedShort, xs:integer, xs:unsignedInt,

xs:nonNegativeInteger, xs:unsignedLong

Number

xs:dateTime, xs:duration, xs:time String

xs:language, xs:string String

xs:hexBinary String

xs:anyType Results in corresponding types

xs:simpleType See next chapter 11.4.4.

xs:complexType See next chapter 11.4.5.

Table 4: Mapping from the XSD Types to JSON Types. 720

11.4.3 Element Occurrences 721

Elements with a specified type can contain the attributes "minOccurs" and "maxOccurs". These 722

attributes specify how often the field can or, respectively, must be added. E.g. "minOccurs=0" means 723

the field is optional and may be omitted. If the "minOccurs" attribute is omitted for an element, it is 724

implicitly set to 1, which means the field is mandatory. 725

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 32 of 96

If "maxOccurs" is set to a value greater than 1, the element is transformed to a JSON array, which 726

contains items of the corresponding type. In that case, "maxOccurs" defines the maximum length of 727

the array, where "unbounded" means there is no upper limit. If the "maxOccurs" attribute is omitted, 728

it is implicitly set to 1, which means no JSON array is generated for the element, but of course the 729

corresponding JSON type. 730

If "minOccurs" and "maxOccurs" are both set to 0, the element is ignored. 731

11.4.4 Simple Types 732

Simple types are specified with the <xs:simpleType> item and always refer to simple types like 733

<xs:integer> or <xs:string>. Simple types can specify restrictions on the value or can define a list or a 734

union of one or more simple types. 735

XSD item in xs:simpleType JSON types

xs:restriction Type corresponding to the base type. Restricts the possible

values.

xs:list Array

xs:union String

Table 5: Transformation of a simple type. 736

Restrictions contain XSD items like <xs:minLength>, <xs:maxLength>, <xs:enumeration>, etc. These 737

items limit the possible values of the type and apply to JSON and XML in the same way. 738

11.4.5 Complex Types 739

Complex types consist of a combination of sub-elements ("particles" in the XML specification), which 740

can be arranged in different ways. These combinations are called compositors, which are: sequence, 741

choice, and all. Some of them can also be nested. Depending on their usage, these compositors result 742

in different JSON representations: 743

 Used in:

Compositor:

xs:complexType xs:sequence xs:choice xs:all

xs:sequence Array + + Not allowed

xs:choice Array + + Not allowed

xs:all Object Not allowed Not allowed +

None Array - - -

Table 6: Mapping from the XSD compositors to JSON Types. 744

"+" means that the sub-elements are only integrated in the superset without creating a new 745

hierarchy level. "Not allowed" means that XML Schema 1.0 prohibits this combination. "-" means 746

that the item is omitted. 747

Furthermore, complex types can be derived from other simple or complex types with further 748

extensions or restrictions. For that, the complex type consists of a <xs:simpleContent> or 749

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 33 of 96

<xs:complexContent> item with a nested <xs:restriction> or <xs:extension>. These items themselves 750

are not transformed into JSON components. 751

In a complex content, restrictions delimit the base type to a set of sub-elements and/or delimit the 752

possible values of elements. Extensions add elements to a sub-type. With that, the JSON structure 753

MUST be transformed from the derived version of the type. This means that the JSON values MUST 754

follow the restrictions and extensions in the same way as for XML. Elements added by an extension 755

MUST also be transformed to corresponding JSON items. 756

In a simple content, restrictions delimit the possible values of the element like for simple types. 757

Extensions can only add attributes to simple types, so they are omitted from the JSON 758

transformation. 759

11.4.6 Rules 760

Generating a JSON representation based upon an XSD is defined as follows. In addition, different 761

coding styles have to be considered, e.g., in XML, closing angle brackets are protected. 762

1. Element names become usual names, which are part of objects. 763

2. Any numbers are recognized and used as a JSON number. 764

3. Booleans are recognized and used as JSON booleans. 765

4. Empty elements get an empty JSON array as value. 766

5. "nil" elements get a JSON null value. 767

6. Elements which may occur in the same place more than once become a JSON array. 768

7. Attributes get absorbed. 769

8. Groups are integrated in the used places without creating additional representations. When the 770

"maxOccurs" attribute of the group is greater than 1, it can be integrated several times. 771

9. The following rules apply on the use of namespaces and namespace prefixes of "explicit SHIP 772

structures" (see section 11.4.1). These rules have an impact on the use of element names: 773

a. SHIP namespace definitions of XMLs are not transformed into a JSON representation. 774

b. SHIP namespace prefixes (including the colon, e.g. "ship:") of XMLs are omitted for the 775

transformation into JSON. I.e. element names of explicit SHIP structures do not contain a 776

SHIP namespace prefix in a JSON representation. 777

10. The following rules apply to the use of namespaces and namespace prefixes of "external 778

specifications" used within the element "data.payload" (see section 11.4.1). These rules have an 779

impact on the use of element names. Whether namespace definitions or namespace prefixes of 780

external specifications are transformed into JSON can be specified per protocolId (see section 781

11.4.1): 782

a. By default, it is assumed that no such transformation is required. 783

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 34 of 96

b. If a namespace definition is to be be transformed into JSON, it is RECOMMENDED to 784

transform it to a JSON object as follows: 785

 {"@xmlns:namespacePrefix" : "schemaReference"} 786

where "namespacePrefix" is a dedicated namespace prefix and "schemaReference" contains 787

the reference from the XML. 788

c. If a namespace prefix is to be transformed into JSON, it is RECOMMENDED to transform it to 789

a JSON object as follows: The element names of the XML shall be used including the 790

namespace prefix and the colon, if present. 791

Example: If an XML contains a tag "xyz:foo", where "xyz" is the prefix, the proper JSON 792

element name would also be "xyz:foo". 793

11.4.7 Example Transformations 794

The following table shows and compares examples for the corresponding XML and JSON 795

representations of the XSD elements: 796

XSD element XML representation JSON representation

<xs:element name="height"

type="xs:double"/>

<height>1.73</height> {

 "height":1.73

}

<xs:element name="checked"

type="xs:boolean"/>

<checked>true</checked> {

 "checked":true

}

<xs:element name="empty">

 <xs:complexType>

 </xs:complexType>

</xs:element>

<empty></empty>

or

<empty/>

{

 "empty":[]

}

<xs:element name="nillable"

nillable="true"/>

<nillable

xsi:nil="true"/>

{

 "nillable":null

}

<xs:element name="items">

 <xs:complexType>

 <xs:sequence>

 <xs:element

maxOccurs="unbounded"

name="item"

type="xs:unsignedInt"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<items>

 <item>1</item>

 <item>2</item>

 <item>3</item>

</items>

{

 "items": [

 {

 "item": [1, 2, 3]

 }

]

}

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 35 of 96

XSD element XML representation JSON representation

<xs:element name="items">

 <xs:complexType>

 <xs:sequence>

 <xs:element

name="item1"

type="xs:unsignedInt"/>

 <xs:element

name="item2"

type="xs:unsignedInt"/>

 <xs:element

name="item3"

type="xs:unsignedInt"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<items>

 <item1>1</item1>

 <item2>2</item2>

 <item3>3</item3>

</items>

{

 "items": [

 {"item1": 1},

 {"item2": 2},

 {"item3": 3}

]

}

<xs:element name="items">

 <xs:complexType>

 <xs:choice>

 <xs:element

name="item1"

type="xs:unsignedInt"/>

 <xs:element

name="item2"

type="xs:unsignedInt"/>

 <xs:element

name="item3"

type="xs:unsignedInt"/>

 </xs:choice>

 </xs:complexType>

</xs:element>

<items>

 <item1>1</item1>

</items>

or

<items>

 <item2>1</item2>

</items>

...

{

 "items": [

 {"item1": 1},

]

}

or

{

 "items": [

 {"item2": 1 },

]

}

<xs:element name="element">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="item"

type="xs:unsignedInt"/>

 </xs:sequence>

 <xs:attribute name="min"

type="xs:unsignedInt"/>

 </xs:complexType>

</xs:element>

<element min="3">

 <item>5</item>

</element>

{

 "element":[

 {"item": 5 }

]

}

<xs:element name="items">

 <xs:simpleType>

 <xs:list

itemType="xs:unsignedInt"/>

 </xs:simpleType>

</xs:element>

<items>1 2 3</items> {

 "items": [1, 2, 3]

}

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 36 of 96

XSD element XML representation JSON representation

<xs:element name="items">

 <xs:complexType>

 <xs:all>

 <xs:element

name="item1"

type="xs:unsignedInt"/>

 <xs:element

name="item2"

type="xs:unsignedInt"/>

 <xs:element

name="item3"

type="xs:unsignedInt"/>

 </xs:all>

 </xs:complexType>

</xs:element>

<items>

 <item3>3</item3>

 <item2>2</item2>

 <item1>1</item1>

</items>

...

{

 "items": {

 "item3": 3,

 "item2": 2,

 "item1": 1

 }

}

...

Table 7: Examples for XML and JSON representations. 797

The following example shows the transformation of an XSD that combines several item types: 798

XSD

 <xs:complexType name="ComplexDataType">

 <xs:sequence>

 <xs:element name="itemDouble" type="xs:double" minOccurs="0">

 </xs:element>

 <xs:element name="itemString" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="complexData" type="ComplexDataType"></xs:element>

 <xs:complexType name="ComplexListDataType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" ref="complexData"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="complexListData" type="ComplexListDataType"/>

 <xs:group name="TestGroup">

 <xs:sequence>

 <xs:element name="itemEmpty">

 <xs:complexType></xs:complexType>

 </xs:element>

 <xs:element name="itemFixed" type="xs:string"

 fixed="predefined value"></xs:element>

 <xs:element name="optionalItem" type="xs:boolean" minOccurs="0"/>

 </xs:sequence>

 </xs:group>

 <xs:element name="example">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="complexListData"/>

 <xs:group ref="TestGroup"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 37 of 96

XML representation

<example>

 <complexListData>

 <complexData>

 <itemDouble>1.6</itemDouble>

 <itemString>abc</itemString>

 </complexData>

 <complexData>

 <itemDouble>2.4</itemDouble>

 <itemString>def</itemString>

 </complexData>

 </complexListData>

 <itemEmpty/>

 <itemFixed>predefined value</itemFixed>

</example>

JSON representation

{

 "example":

 [

 {

 "complexListData":

 [

 {

 "complexData":

 [

 [

 {

 "itemDouble": 1.6

 },

 {

 "itemString": "abc"

 }

],

 [

 {

 "itemDouble": 2.4

 },

 {

 "itemString": "def"

 }

]

]

 }

]

 },

 {

 "itemEmpty":[]

 },

 {

 "itemFixed":"predefined value"

 }

]

}

Table 8: Example transformation of several combined XSD item types. 799

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 38 of 96

11.5 JSON to XML Transformation 800

11.5.1 Scope 801

Converting JSON to a corresponding XML representation can be ambiguous as the expressiveness of 802

the two formats differs. E.g. JSON allows to model empty arrays while XML does not. The 803

transformation rules in this chapter aim to reduce these ambiguities. 804

 805

11.5.2 Rules 806

Generating an XML representation based upon a JSON is defined by reversing the rules defined in 807

chapter 11.4. Additionally, the following rules apply: 808

1. Empty JSON arrays where the corresponding XSD element may occur more than once MUST be 809

ignored. 810

 811

11.5.3 Example Transformation 812

The following table shows examples for particular transformations from JSON to XML for given XSD 813

elements. 814

Table 9 compares two JSON representations "a" and "b" leading to the same XML representation 815

according to the rules in section 11.5.2 for a given XSD permitting multiple occurrences of an 816

element. Representation "a" is the regular representation as it follows the transformation principles 817

from section 11.4 for an XML with absent list items: As the XML contains no list item at all, the same 818

level of information should also be present in the JSON representation. However, as JSON naturally 819

permits representations like "b", it needs to be considered equivalent to "a". 820

XSD element JSON representation XML representation

<xs:element name="items">

 <xs:complexType>

 <xs:sequence>

 <xs:element

maxOccurs="unbounded"

name="item"

type="xs:unsignedInt"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

a)

{

 "items": []

}

b)

{

 "items": [

 {

 "item": []

 }

]

}

<items>

</items>

Table 9: Example for JSON to XML transformation. 821

 822

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 39 of 96

12 Key Management 823

The essential credentials of the key management in this specification consist of the following key 824

material: 825

1. Public keys: Used by SHIP nodes in the first step of authentication to validate the authenticity of 826

signatures and perform an ECDH key agreement. Also, the corresponding SKI values of the public 827

keys are used for identification and authentication of SHIP nodes. 828

2. Private keys: Each SHIP node also has a private key corresponding to its public key, which is used 829

to generate signatures and perform ECDH key agreements. 830

Note: While a public key has no requirements regarding confidentiality and can be transmitted in 831

band, the private key must be kept secret and should never be transmitted. This is especially 832

important if the private key pair comes along with a corresponding PKI-certificate. In this case, a 833

secure element should be used to protect the stored private key. 834

3. Symmetric keys: Used for mutual authentication and symmetric encryption during efficient 835

reconnection and runtime communication. 836

4. PIN: Optionally used in the second step of authentication (independent from TLS) to improve the 837

trust level. E.g. if only auto accept was used by a SHIP node in the first authentication step, which 838

only offers a relatively low trust level, a PIN can be used to reach mutual authentication and e.g. 839

enable commissioning. 840

12.1 Certificates 841

12.1.1 SHIP Node Certificates 842

A SHIP node MUST have a certificate. No matter if the node acts as SHIP client or SHIP server, a SHIP 843

node MUST always provide a certificate during the TLS handshake for mutual authentication. 844

A self-signed or PKI based certificate MUST be used. 845

SHIP node certificates MUST include a SHIP node specific public key. 846

One public/private key pair SHALL NOT be used for more than one certificate. 847

One SHIP node certificate SHALL NOT be used for more than one SHIP node. 848

This SHIP specification does not specify a mandatory PKI. 849

If a SHIP node does not know the PKI of another SHIP node, the corresponding PKI based certificate is 850

just treated like a self-signed certificate. Hence, interoperability within SHIP does not depend on 851

using a certain PKI. 852

A SHIP node MAY also receive and manage a revocation list from a web server. If a SHIP node has a 853

synchronized time, it MAY also check whether a certificate is still valid. Other means of certificate 854

evaluation MAY also be used by a SHIP node. However, the additional evaluation of a certificate is 855

only a manufacturer specific topic at the moment. 856

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 40 of 96

In general, a SHIP node MUST at least verify the public key of the certificate with one of the four 857

registration modes described in chapter 12.3.1. Any other evaluation of the certificate is optional or 858

manufacturer specific and SHALL NOT affect the general SHIP authentication and communication. 859

This includes certificate lifetime checks, PKI checks, and other checks of the certificate. This means if 860

optional or manufacturer specific checks fail, but the received public key is authenticated correctly, 861

the SHIP node SHOULD still allow communication with the other device. An invalid PKI certificate 862

SHOULD be handled like a self-signed certificate, as trust in SHIP relies on the SHIP node specific 863

public key and not a PKI. E.g. a PKI certificate with an invalid lifetime SHOULD just be handled like a 864

self-signed certificate (no "PKI trust" is given, but if the public key is trusted, this certificate MAY still 865

offer "user trust"). This also applies if a SHIP node does not support a synchronized time to check the 866

lifetime of a PKI certificate. If an optional check fails, a SHIP node MAY inform the user about the 867

reasons for a failed optional check. 868

Note: If a SHIP node certificate has a lifetime, the manufacturer SHOULD also implement update 869

mechanisms for the certificate. 870

The certificate of a SHIP node MAY be changed together with the public key, SKI, and the 871

corresponding private key by the user, e.g. via a user interface or commissioning tool. However, via a 872

factory reset the original public key, SKI, private key and certificate SHOULD be restored again, as this 873

is especially important in case the SKI of the public key is printed on a device label. 874

The CN (common name) field is out of scope for certificates within this SHIP specification. A SHIP 875

node SHOULD ignore the CN (common name field) field of received certificates. 876

12.1.2 Web Server Based SHIP Node Certificates 877

A web server-based SHIP node has a special role, as a web server is usually not a local member of the 878

private network and in such cases cannot act as a client. A web server based SHIP node SHOULD have 879

a PKI based certificate. 880

Therefore, SHIP nodes that want to communicate with a web server-based SHIP node SHOULD have a 881

corresponding CA-certificate for the verification of the web server's certificate. 882

Note: A CA-certificate has no requirements regarding confidentiality. However, a SHIP node MUST 883

assure that the CA-certificate storage cannot be manipulated. 884

12.2 SHIP Node Specific Public Key 885

A SHIP node MUST have a SHIP node specific public key. If the SHIP node also has a SHIP node 886

certificate, this SHIP node specific public key MUST be part of the SHIP node certificate. The SHIP 887

node specific public key has no requirements regarding confidentiality and can be transmitted in-888

band. 889

The Subject Key Identifier (SKI) of the SHIP node specific public key MUST be provided to the user. 890

The Subject Key Identifier SHALL be generated as described in RFC 3280, chapter 4.2.1.2 method (1). 891

The own SKI value of each SHIP node SHALL be made accessible to the user in full length. 892

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 41 of 96

Also, for user verification, the SKI values of other SHIP nodes SHOULD be displayed in full length. The 893

user may decide which parts of the key to compare before accepting the key. 894

The 20 byte-long SKI of the public key SHALL be provided to the user as 40 hexadecimal digits in the 895

following form. To increase the readability of the SKI and provide interoperability from a user 896

perspective, spaces SHALL be inserted each 4 hexadecimal digits, as shown below: 897

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 898

Example of an SKI user representation on a display or device label: 899

SKI value: 0x1234AAAAFFFF1111CCCC3333EEEEDDDD99992222 900

 SKI string: 1234 AAAA FFFF 1111 CCCC 3333 EEEE DDDD 9999 2222 901

Remark: The SHIP node SKI MAY also be integrated into a QR-code together with the PIN, as 902

described in chapter 12.6. 903

At least one of the following measures MUST be applied to make the SKI of the public key accessible 904

for the user: 905

- Label: Access to the SKI of the SHIP node specific public key is provided via a label on the 906

SHIP node. 907

- User interface: Access to the SKI of the SHIP node specific public key is provided via a user 908

interface (e.g. display) of the SHIP node. 909

- Local communication interface: Access to the SKI of the SHIP node specific public key is 910

provided via a local user communication interface of the SHIP node, e.g. NFC. The user MUST 911

be able to easily access the public key of the SHIP node. Therefore, the local communication 912

must provide easy and user friendly access to the SKI. 913

- Cloud based user interface: Access to the SKI of the SHIP node specific public key is provided 914

via a user interface in the cloud. The public key must be accessed via the serial number, or 915

some other SHIP node-specific distinctive characteristic. 916

The public key of a SHIP node MAY be changed by the user along with the SKI, private key and 917

corresponding certificate, e.g. via a user interface or a commissioning tool. However, via a factory 918

reset the original public key, SKI, private key and certificate SHOULD be restored again. This is 919

especially important in case the SKI of the public key is printed on a device label. 920

12.2.1 Public Key Storage 921

Each verified public key of another SHIP node SHALL be stored together with the trust level of the 922

verification mode that was used. Public keys that could not be verified MAY be stored as unknown 923

public keys. 924

Note: To avoid re-verification by user interaction, the trusted public key and its trust level SHOULD 925

be stored persistently. 926

Unknown public keys SHALL issue a "user trust level" of "0". 927

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 42 of 96

A SHIP node SHOULD offer the user a possibility to remove certain trusted public keys at any time. At 928

least the SHIP node MUST offer a possibility to delete all stored public keys from communication 929

partners (e.g. via factory reset). 930

12.2.2 Prevent Double Connections with SKI Comparison 931

The public key SHALL also be used to prevent double connections. If a SHIP node recognizes that 932

there are two or more simultaneous connections to another SHIP node, the SHIP node with the 933

bigger 160 bit SKI value SHALL only keep the most recent connection open and close all other 934

connections to the same SHIP node (a previous release of this SHIP specification may permit a 935

different preference). If an older connection is already in the SME data exchange phase, the SHIP 936

node with the bigger SKI value SHOULD initiate a connection termination as described in section 937

13.4.7. 938

In general, each SHIP node may close a connection – even the SHIP node with the smaller SKI value – 939

if a timeout was detected or the SHIP node with the bigger SKI value does not close double or 940

multiple connections to the same SHIP node within 3 seconds. After a timeout of 3 seconds, the 941

device with the smaller SKI value SHALL send a WebSocket ping. Connections that are not pingable 942

(i.e. where no proper Pong frame is received as response) SHOULD be closed. If multiple connections 943

are still pingable, the SHIP node with the smaller SKI value MAY close the older connection. If an 944

older connection is already in the SME data exchange phase, the SHIP node with the smaller SKI 945

value SHOULD initiate a connection termination as described in section 13.4.7. 946

The SHIP node with the greater SKI SHOULD check for double connections directly during the TLS 947

handshake. 948

12.3 Verification Procedure 949

SHIP nodes that possess one or more CA-certificates MAY check whether a received certificate is a 950

PKI or self-signed certificate. 951

A communication partner with a matching PKI certificate MAY gain additional PKI trust, depending on 952

the trustworthiness of the corresponding CA. 953

A SHIP node MUST always verify the public key of the communication partner with one of the 954

following verification modes. 955

12.3.1 Public Key Verification Modes 956

Each public key verification mode provides a certain user trust level, the "user trust". While the 957

verification mode describes the concrete mode, the user trust level maps the different modes on a 958

generic value. In each of the public key verification modes, user interaction is necessary to establish 959

user trust between two SHIP nodes to ensure user consent. 960

When a stored public key is reused, it MUST be possible to derive the trust level of the public key. 961

The following Public Key verification modes exist: 962

1. Auto accept: user trust level = 8 963

2. User verify: user trust level = 32 964

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 43 of 96

3. Commissioning: user trust level = 32-96 (depending on the trustworthiness of the 965

"commissioning tool") 966

4. User input: user trust level = 64 967

The user trust level of a public key can be adjusted during runtime whenever a public key is re-968

verified in a more secure manner. If for example an "auto accepted" public key is later re-verified 969

successfully as a "commissioned" public key, the trust level SHALL be adjusted to the "commissioned" 970

trust level. 971

A SHIP node MUST implement at least one of the verification modes. Two or more verification modes 972

MAY be active in parallel during runtime. To allow the user to choose between an easy verification 973

mode and a more secure option, it is RECOMMENDED to implement two or more verification modes. 974

In general, the "commissioning" mode is always a good option for most devices, as it can be used in 975

combination with a smart phone or a web service to provide a very user friendly method of 976

establishing a high level of trust between SHIP nodes. 977

12.3.1.1 Auto Accept 978

This mode should only be implemented by very simple SHIP nodes without any user interface (UI), as 979

it is the least secure verification mode. 980

If "auto accept" is triggered in a SHIP node (e.g. by push button) by the user, the SHIP node SHALL 981

open a time window in which it MUST automatically accept an unknown public key that is received 982

during registration. 983

Note: Only one public key SHALL be accepted during a single "auto accept" time window. Hence, 984

after accepting one unknown public key during "auto accept", the "auto accept" mode SHALL 985

instantly be deactivated. 986

As "auto accept" skips the public key verification of the received unknown public key (thus 987

introducing the potential risk of man-in-the-middle attacks), the duration for the auto accept time 988

window SHALL be kept as low as possible from a usability perspective and MUST be lower than or 989

equal to 2 minutes. However, please keep in mind that man-in-the-middle attacks are still possible 990

even with a shorter time window. 991

12.3.1.2 User Verification 992

This mode SHOULD be implemented by any SHIP node with an appropriate display or communication 993

interface for the user. 994

If "user verification" is used, the SHIP node MUST inform the user when unknown SKI values of public 995

keys are presented during local service discovery of other nodes via mDNS or during a TLS 996

handshake. The information MUST include the SKI value of the public key. "User verification" can also 997

be applied to already stored public keys to increase the user trust level or discard public keys. 998

12.3.1.3 Commissioning 999

This mode SHOULD be implemented by any SHIP node that can be connected with an appropriate 1000

commissioning tool. 1001

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 44 of 96

Note: The trust level of a public key that was verified via "commissioning" mode depends on the 1002

trustworthiness of the used commissioning tool. 1003

If SKI values of public keys are received from a commissioning tool, those SKI values SHALL be stored 1004

persistently together with the user trust level of the commissioning tool and used during verification 1005

to identify matching public keys. A SHIP node SHALL also check if there are already known SHIP nodes 1006

with a matching public key and adjust the trust level accordingly. 1007

A commissioning tool MAY also be used to provide access to a revocation list or to update key 1008

material of a SHIP node. 1009

Manufacturers are free to use their own solution for commissioning. However, to provide 1010

interoperability for B2B and from a user perspective, an interoperable commissioning functionality 1011

that can be reached via a trustworthy communication channel such as SHIP should be used. The 1012

commissioning functionality may be reachable via SHIP by using "auto accept" and an additional PIN 1013

or "user verify" or "user input" or "commissioning". 1014

Note: As "commissioning" provides user trust, the user SHALL be part of the commissioning 1015

procedure and user consent is required. 1016

12.3.1.4 User Input 1017

This mode SHOULD be implemented by any SHIP node that has an appropriate interface for out of 1018

band data input, e.g. an appropriate user interface. 1019

If SKI values of public keys are entered into the SHIP node, those SKI values SHALL be stored 1020

persistently together with the user trust level of user input and used during verification to identify 1021

matching public keys. A SHIP node SHALL also check if there are already known SHIP nodes with a 1022

matching public key and adjust the trust level accordingly. 1023

12.3.2 Trust Level 1024

The trust level expresses the trust in a certain communication partner using generic values. The 1025

higher the values, the stronger the trust in the corresponding communication partner. 1026

The trust level consists of different categories, which include different mechanisms and permit a 1027

differentiated view of the trustworthiness of a communication partner. Currently, there are the 1028

following trust level categories in SHIP: 1029

1. User trust 1030

verification mode user trust level value

none 0

auto accept 8

user verified 32

commissioned 32-96 (depending on trustworthiness of commissioning

tool)

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 45 of 96

verification mode user trust level value

user input 64

Table 10: User Trust 1031

2. PKI trust 1032

PKI verification PKI trust level value

self-signed 0

signed by PKI 0-65535 depending on SHIP node policy / trust in certain PKI

Table 11: PKI Trust 1033

3. Second factor trust 1034

second factor Second factor trust level value

none 0

PIN 16 or 32 (see section 12.5: "32" reserved for first PIN transmitter)

Table 12: Second Factor Trust 1035

If multiple mechanisms are used from the same category, only the mechanism which offers the 1036

highest trust level in this category SHALL be accounted for. E.g. if a SHIP node has verified a public 1037

key with "auto accept" and "user verify", only "user verify" is accounted for and therefore the "user 1038

trust" value is "32". 1039

A "user trust" of "8" is the minimal "user trust" that is required for general SHIP communication. This 1040

means if the "user trust" is less than "8", the SME "hello" handshake SHALL be aborted, like 1041

described in chapter 13.4.4.1. 1042

For commissioning via SHIP, a trust level of "32" or higher MUST be achieved in the "user trust level" 1043

or "second factor trust level" category. E.g. a "second factor trust level" of "32" would allow 1044

commissioning over SHIP, but also a "user trust level" of "32" would allow commissioning. 1045

The PKI trust depends on the manufacturer's policy. PKI certificates are not mandatory, hence 1046

general communication SHALL also be possible without the use of a trusted PKI and a "PKI trust level" 1047

of "0". 1048

The PIN is currently the only second factor authentication mechanism and MAY provide an additional 1049

trust level value of "16-32" in the "second factor trust" category, as described in chapter 12.5. 1050

A layer above SHIP can use the trust level to control access to certain functionality. The trust level 1051

requirements MAY differ depending on the feature, the kind of application/use case, and legal or 1052

device related security requirements. Some privacy relevant use cases might require a high "user 1053

trust" while manufacturer specific use cases might have a high requirement regarding the "PKI trust 1054

level". 1055

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 46 of 96

12.4 Symmetric Key 1056

Depending on the chosen security method, a SHIP node SHOULD store the necessary key material in 1057

order to reconnect in an efficient manner. 1058

If TLS was used, the session state of this connection SHOULD be stored and reused during a 1059

reconnection, as described in chapter 9.6. 1060

The session state SHALL be stored in alignment with the public key and the trust level of the 1061

corresponding communication partner. 1062

12.5 SHIP Node PIN 1063

The SHIP node PIN provides a very user friendly way to reach mutual authentication, e.g. via QR-code 1064

scan between a smart phone and a SHIP node that uses auto accept and additionally waits for a valid 1065

PIN. The SHIP node PIN transmission is described in chapter 13.4.4.3. 1066

The SHIP node PIN is bound to the public key/SKI of the SHIP node. Therefore, the SHIP node PIN 1067

SHALL only be transmitted to a SHIP node that is the cryptographically proven owner of the 1068

corresponding public key. After the SHIP node PIN was transmitted, the sender SHOULD discard the 1069

PIN. 1070

The PIN is an authentication secret that must be kept confidential and SHALL only be shared with 1071

authenticated and authorized communication partners. Therefore, the SHIP node PIN SHALL NOT be 1072

transmitted if the public key of the corresponding communication partner has a user trust level that 1073

is less than "32". 1074

The first communication partner after factory default that sends the SHIP node PIN MAY gain a 1075

higher second factor trust level of "32" and therefore MAY gain access to special functionality. E.g. a 1076

communication partner that has a second factor trust of "32" MAY act as a "commissioning tool" 1077

towards the SHIP node. In SHIP, it is not possible that two SHIP nodes may gain a second factor trust 1078

of "32" with the SHIP node PIN. Any SHIP node that sends the PIN afterwards SHALL only get a 1079

second factor trust of "16". If another communication partner should be the one with a second factor 1080

trust of "32", a factory reset must be performed. After factory reset, the first communication partner 1081

that sends the SHIP node PIN MAY gain a higher second factor trust level of "32" again. 1082

 1083

Figure 5: Easy Mutual Authentication with QR-codes and Smart Phone 1084

Commissioning

App

SHIP node

Registration
mutually authenticated

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 47 of 96

The SHIP node PIN SHALL be provided to the user as 8-16 hexadecimal digits in the following form 1085

(equivalent to 32-64 Bit PIN). To increase the readability of the PIN and provide interoperability from 1086

a user perspective, spaces should be inserted between every 4 hexadecimal digits in a graphical 1087

presentation as shown below: 1088

XXXX XXXX (8 digits) 1089

XXXX XXXX X (9 digits) 1090

... 1091

XXXX XXXX XXXX XXXX (16 digits) 1092

Example of a 40-Bit PIN user representation on display or device label: 1093

• Graphical representation: 5555 AAAA FF 1094

• Corresponding 40-Bit PIN value in hexadecimal format: 0x5555AAAAFF 1095

Remark: The SHIP node PIN MAY also be integrated into a QR-code together with the SKI, as 1096

described in chapter 12.6. 1097

This subsection only addresses the PIN in the scope of key management. The actual transmission 1098

format is described in subsection 13.4.4.3 of the SHIP data exchange chapter. 1099

The PIN of a SHIP node MAY be changed by the user, e.g. via a user interface or commissioning tool. 1100

However, via a factory reset the original PIN MUST be restored again. This is especially important if 1101

the original PIN is printed on a device label. 1102

If a SHIP node PIN is changed during runtime, this SHALL NOT affect any trust level of already trusted 1103

SHIP nodes. If a user wants other SHIP nodes to reenter the PIN, the user MUST force a re-1104

registration of the corresponding SHIP node by deleting the trust relationship to the corresponding 1105

SHIP node. 1106

12.6 QR Code 1107

QR Code Model 2 with at least "low" ECC level SHOULD be used. 1108

The size of each module of the QR-code SHALL be at least 330*10-6 metres. This equals a module size 1109

of 4 pixels when printed with 300dpi. 1110

The quiet zone SHALL have a width of at least 4 modules. 1111

Certain SHIP specific data MAY be integrated into a QR-code. The main advantage of the QR-code is 1112

that it allows a very user friendly and mutually authenticated connection establishment with smart 1113

phones via "scan", ideally also enabling the smart phone as "commissioning tool". 1114

If SHIP data is integrated, the following encoding rules MUST be fulfilled: 1115

1) SHIP prefix: The SHIP specific data in the QR-code SHALL start with a SHIP prefix, the string 1116

"SHIP;" in UTF-8 encoding. 1117

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 48 of 96

2) SKI (mandatory): After the SHIP prefix, the SKI MUST follow. The SKI MUST be encoded as 1118

follows: 1119

a) The first 4 bytes MUST include the string "SKI:" in UTF-8 encoding. 1120

b) The next bytes MUST include the SKI value as a non-prefixed hexadecimal string in UTF-8 1121

encoding with an additional space every 4 hexadecimal digits, as also described in chapter 1122

12.2. Upper or lower case letters MAY be used (0-9, A-F, a-f). 1123

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1124

end of the hexadecimal SKI string. 1125

d) Example: "SKI:5555 AAAA FfFf 1111 CCCC 3333 EEeE ddDD 9999 2222;" 1126

3) PIN (mandatory if SHIP node has a PIN): If the SHIP node also has a PIN, the encoded PIN SHALL 1127

follow after the encoded SKI. The PIN MUST be encoded as follows: 1128

a) The first 4 bytes MUST include the string "PIN:" in UTF-8 encoding. 1129

b) The next bytes MUST include the PIN as non-prefixed hexadecimal string in UTF-8 encoding 1130

with an additional space every 4 characters, as also described in chapter 12.5. Upper or 1131

lower case characters MAY be used (0-9,A-F,a-f). 1132

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1133

end of the hexadecimal PIN string. 1134

d) Example: "PIN:5555 AaAa FF;" 1135

4) ID (recommended): The SHIP ID. After the PIN, if present, or otherwise after the SKI, if the PIN is 1136

not present, the ID SHOULD follow. The ID MUST be encoded as follows: 1137

a) The first 3 bytes MUST include the string "ID:" in UTF-8 encoding. 1138

b) The next bytes MUST include the ID value as string in UTF-8 encoding. The ID value itself 1139

MUST NOT contain a semicolon character! 1140

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1141

end of the ID string. 1142

d) Example: "ID:EXAMPLEBRAND-EEB01M3EU-001122334455;" 1143

5) BRAND (optional): MAY be used after ID to provide brand information about the device in the 1144

QR-code. 1145

a) The first 6 bytes MUST include the string "BRAND:" in UTF-8 encoding. 1146

b) The next bytes MUST include the brand information as string in UTF-8 encoding. The brand 1147

information itself MUST NOT contain a semicolon character! 1148

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1149

end of the BRAND string. 1150

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 49 of 96

d) Example: "BRAND:EXAMPLEBRAND;" 1151

6) TYPE (optional): MAY be used after BRAND to provide type information about the device in the 1152

QR-code. 1153

a) The first 5 bytes MUST include the string "TYPE:" in UTF-8 encoding. 1154

b) The next bytes MUST include the type information as string in UTF-8 encoding. The type 1155

information itself MUST NOT contain a semicolon character! 1156

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1157

end of the TYPE string. 1158

d) Example: "TYPE:DISHWASHER;" 1159

7) MODEL (optional): MAY be used behind TYPE to provide model information about the device in 1160

the QR-code. 1161

a) The first 6 bytes MUST include the string "MODEL:" in UTF-8 encoding. 1162

b) The next bytes MUST include the model information as string in UTF-8 encoding. The model 1163

information itself MUST NOT contain a semicolon character! 1164

c) The last byte MUST include the character ';' (semicolon) in UTF-8 encoding. This marks the 1165

end of the MODEL string. 1166

d) Example: "MODEL:EEB01M3EU;" 1167

Example QR-code encoding with only SKI and PIN: 1168

"SHIP;SKI:5555 AAAA FFFF 1111 CCCC 3333 EEEE DDDD 9999 2222;PIN:5555 1169

AAAA FF;" 1170

 1171

Figure 6: QR Code Model 2, "low" ECC level, 0.33mm/Module, with SKI and PIN 1172

The QR code with SKI and PIN has a size of 33x0.33mm = 10.89mm (without quiet zone). 1173

 1174

Example QR-code encoding with only mandatory values: 1175

"SHIP;SKI:5555 AAAA FFFF 1111 CCCC 3333 EEEE DDDD 9999 2222;PIN:5555 1176

AAAA FF;ID:EXAMPLEBRAND-EEB01M3EU-1177

001122334455;BRAND:EXAMPLEBRAND;TYPE:DISHWASHER;MODEL:EEB01M3EU;" 1178

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 50 of 96

 1179

Figure 7: QR Code Model 2, "low" ECC level, 0.33mm/module, with all values 1180

The QR code with all values has a size of 47x0.33mm = 15.51mm (without quiet zone). In a different 1181

example, the size might vary because of the variable length of ID, BRAND, TYPE and MODEL. 1182

 1183

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 51 of 96

13 SHIP Data Exchange 1184

13.1 Introduction 1185

This section (13.1 only) is informative only for the underlying revision of the specification. It is 1186

normative for the development of a successor of this specification (though the successor may well 1187

adjust this section accordingly). 1188

The concept makes use of the following assumptions: 1189

1. The exchange of data between two SHIP nodes is considered (i.e. no routing to other SHIP nodes 1190

and no routing/branching within SHIP nodes are considered). 1191

2. The communication between two SHIP nodes is connection oriented. 1192

3. The connection is bidirectional. 1193

4. Only so-called SHIP messages are exchanged (i.e. no streams). 1194

5. SHIP Transport assumes a communication channel that is chosen or defined and used in a 1195

manner to permit safe message separation for every supported message format (this is relevant 1196

for binary formats). 1197

6. The communication channel is reliable (verification of successful data transmission). 1198

7. SHIP messages are delivered in the same order as they were submitted. 1199

The concept is designed to permit modifications on the assumptions and mechanisms in future 1200

versions of the specification as long as extensibility and compatibility mechanisms are properly 1201

considered. 1202

13.2 Terms and Definitions 1203

"Server", "Client", connection role 1204

In this chapter, the terms "server" and "client" are primarily used with regards to an underlying 1205

connection technology, i.e. they are usually NOT used as functional roles such as "light switch" or 1206

"time information server". See 13.4.1 for details. 1207

Message Definition 1208

This specification provides definitions for so-called SHIP messages. The definitions make use of 1209

miscellaneous description concepts (XSD, binary structure, table, ...). For each message, there can 1210

also be a process definition on the use of the message. 1211

Message Parts and Composition 1212

A message is composed of message parts. The parts can have different requirements regarding 1213

representation. 1214

Example: The "message type" part can be a byte whereas the "message value" can be represented 1215

with JSON-UTF8 or another agreed format. 1216

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 52 of 96

Representation 1217

A representation is an instance of a message part in an "official" format (which implies rules on its 1218

use). Each format is a "wire format". 1219

Depending on the scope or message variant (see below) different representations are permitted 1220

(JSON-UTF8, JSON-UTF16, binary, "mixed"/message dependent). 1221

Note: For a given message variant, all permitted representations must be equivalent (i.e. there must 1222

be a lossless conversion available between the representations)! 1223

Note: Subsequent versions may use further representations. 1224

Message Wire Format 1225

The message wire format determines the wire format of the whole message, i.e. the composition of 1226

all message parts. This requires that the message format allows to determine all representations. 1227

Unless stated otherwise, the term "SHIP message" refers to a wire format. In the wire format, a SHIP 1228

message is of limited size and has a start and an end. 1229

Format Descriptor 1230

For each message wire format, a format descriptor is defined. The format descriptor can be used 1231

during protocol handshake to agree on the wire format for subsequent communication. 1232

SHIP Message Facets 1233

This specification defines different variants and types of SHIP messages. 1234

The variant of a SHIP message is uniquely determined by the SHIP transmission context or by the 1235

message itself (using a message variant identifier). 1236

Examples for SHIP message variants: CMI message (see 13.4.3), connectionHello (SME "Hello" 1237

message, see 13.4.4.1), etc. 1238

Each variant belongs to a SHIP message type. These types ("init", "control", etc.) are defined in Table 1239

13. 1240

Extensibility 1241

Definitions of messages and message parts can prescribe if or how they can be extended with 1242

content not explicitly specified in this specification. 1243

Unless stated otherwise, extension rules serve to achieve and preserve forward and backward 1244

compatibility between devices belonging to different SHIP releases. Rules for manufacturer-specific 1245

extensions are given separately and are marked for this purpose. 1246

"RFU" - "Reserved for Future Use" 1247

Definitions that are marked with "RFU" denote potential future extensions of the specification. Such 1248

extensions can be defined by the specification authority ONLY. Under no circumstances shall such 1249

extensions be used for manufacturer-specific extensions. 1250

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 53 of 96

Remark: This rule is crucial in order to prevent ambiguities and to keep interoperability. Therefore, 1251

for subsequent releases of the specification, the specification authority can give concrete 1252

specifications for regions formerly marked with "RFU", regardless of any manufacturer-specific use. 1253

Default Structure Extensibility 1254

A structure consists of a "parent" element with zero or more optional or mandatory "child" elements. 1255

The child elements have no meaning without the parent element. 1256

A well-defined structure is a structure definition of this specification. Among other things, a 1257

definition imposes rules for the unique identification of parent and child elements, on the order and 1258

presence of child elements, and on their types. The child elements of a well-defined parent are called 1259

"known children". 1260

By default, no other child than a "known child" is permitted in a well-defined parent. 1261

The "default structure extensibility" is a property that can be associated with a given structure. This 1262

property is defined as follows: It marks the structure as being extensible by the specification 1263

authority in a specific way. A future version of the specification may define further child elements 1264

beyond the last "known child" of the current revision's parent element. This property applies to 1265

immediate children of the parent only (i.e. not to second-degree children, e.g.). The "default 1266

structure extensibility" applies only where explicitly mentioned. 1267

The property "default structure extensibility (recursive)" extends the "default structure extensibility" 1268

recursively, i.e. down to all children that are themselves parents for their children. 1269

Remark: This simply means that a future specification may append new children to a parent that 1270

permits default structure extensibility. It does not mean that new children can appear before or 1271

between known children. This is most relevant for a serialized form of a structure instance. The 1272

default structure extensibility also does not mean that manufacturer-specific children are permitted. 1273

13.3 Protocol Architecture / Hierarchy 1274

13.3.1 Overview 1275

The following protocol architecture is used to define responsibilities for data exchange and interfaces 1276

or algorithms: 1277

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 54 of 96

 1278

Figure 8: Protocol Architecture and Hierarchy 1279

This chapter focuses on the elements with white boxes. The grey boxes are for reference only. 1280

This specification does not require implementations to provide modules or functionalities to be 1281

structured as shown by the architecture. Rather, the architecture provides clear definitions to also 1282

ensure extensibility and flexibility in future releases of this specification. 1283

13.3.2 SHIP Message Exchange (SME), SME User 1284

The interface of SME towards a SHIP Application (i.e. the "SME User") is called "SME-AP". Using the 1285

ISO-OSI model terminology, SME-AP is the service access point of the SHIP Message Exchange 1286

Instance (SME-I). The SME-AP indicates received SHIP messages and takes SHIP messages for the 1287

transport to another SME-AP. A SHIP Application uses SME-AP to receive or send SHIP messages. 1288

The SME-I protocol is the SHIP message in the wire format. SME-I itself requires a service access 1289

point to a SHIP Transport Instance to perform the message exchange. 1290

Technical details on SME are described in 13.4. 1291

Remark: Future versions of the specification may also define the exchange of a "SHIP Stream" as a 1292

further service. The service would probably be parallel to SME-I in terms of a layered hierarchy. It 1293

would also require a (properly adjusted) SHIP Transport Instance. 1294

13.3.3 SHIP Transport 1295

A SHIP Transport Instance is responsible for extracting SHIP messages from received data and offer it 1296

to SME-I. For the opposite direction, it is responsible for taking SHIP messages from SME-I and 1297

transmit proper data to the communication partner. 1298

In this revision of the specification, the SHIP Transport Instance is implemented as follows: 1299

WebSocket

TLS

SHIP Transport

SHIP Message Exchange (SME)

SHIP Application

TCP

SHIP Message

SME User

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 55 of 96

SHIP Transport itself uses the message frame of WebSocket for data exchange (dependent on the 1300

used security method). Exactly one SHIP message (in the wire format) is exchanged in exactly one 1301

WebSocket message. This means exactly the last WebSocket fragment of a SHIP message has the FIN 1302

bit set. 1303

Remark (informative): This basically means that SHIP Transport defines how WebSocket shall be used 1304

for SHIP Transport specific needs. This applies to at least this revision of the specification. Future 1305

versions of the specification may use other technologies as an alternative to WebSocket. The support 1306

of a "SHIP Stream" may also require changes. This can, for example, result in the definition of an 1307

additional frame around the SHIP messages. As a consequence, this version of the specification must 1308

provide at least a possibility for future extensions on the transport layer and initial compatibility 1309

rules. One step towards the preparation for future extension is the definition of "CMI". 1310

13.4 SHIP Message Exchange 1311

13.4.1 Basic Definitions and Responsibilities 1312

Underlying Connection States 1313

This specification does not define how a connection between the SME instances of two SHIP nodes is 1314

established. It just assumes that a lower layer or internal mechanisms will provide a connection that 1315

is either open or closed. 1316

SME Connection and States 1317

An SME connection is a connection between the SME instances of two SHIP nodes. Depending on the 1318

underlying connection state, the SME connection state is also open or closed. In addition to these 1319

basic states, each SME instance can have further states. These states can change depending on 1320

exchanged SHIP messages. In the following sections, the messages and states are explained in more 1321

detail. 1322

SME Connection and Roles 1323

It is REQUIRED that each SME instance has a unique role assigned for each connection. This role is 1324

either "server" or "client". If one of the communication partners has the role "server", the other 1325

communication partner MUST have the role "client". The role is constant as long the connection is 1326

not closed. Unless stated otherwise, it is NOT required that a reconnection between the 1327

communication partners assigns the same roles as the previous connection. 1328

Note: A SHIP node MAY have multiple (distinct) SME connections to different communication 1329

partners. The SHIP node is permitted to have different roles per connection. 1330

Note: The role described in this section relates to the SME connection only. It does NOT impose any 1331

"functional role" related with application specific messages (e.g. a role as "energy management 1332

server" would be independent from the SME connection role). 1333

Remark: This specification does not describe how this information is gained from lower layers or 1334

implementations. 1335

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 56 of 96

Responsibilities 1336

All messages and processes described within section 13.4 are the responsibility of the user of the 1337

SME-AP (i.e. of SME User), unless stated otherwise. 1338

Remark (informative): First of all, the use of "SME User" instead of "SHIP Application" shall help make 1339

clear that it is SME that imposes rules on its use. I.e. the rules are not determined by the SHIP 1340

Application. Secondly, in general, a layer should avoid mentioning a specific upper layer. 1341

13.4.2 Basic Message Structure 1342

A SHIP message is formally defined using ABNF: 1343

Message = MessageType MessageValue 1344

MessageType = OCTET 1345

MessageValue = 1*OCTET 1346

The following values are defined for MessageType: 1347

Value Name

0 init

1 control

2 data

3 end

4-255 RFU

Table 13: MessageType Values 1348

If an SME User receives a message with unknown type, it SHALL silently discard it or close the 1349

communication channel. 1350

Remark (informative): The leading type identifier is primarily a preparation for future binary formats. 1351

The subsequent sections define several messages with their type and value. In most cases, the 1352

proper definition for MessageValue is given in a text-based format. However, as will be seen later on, 1353

the SHIP protocol is prepared for multiple formats. 1354

13.4.3 Connection Mode Initialisation (CMI) 1355

As soon as an SME instance has opened a connection to a communication partner, it enters the SME 1356

connection state "CMI_INIT_START", which immediately refers to a connection role specific state. 1357

Remark (informative): CMI is designed to permit more efficient reconnections or format agreements 1358

in subsequent versions of this specification. The concept ensures the definition of a compatibility 1359

concept between these versions through fall-back mechanisms. I.e. devices based upon newer 1360

versions of the specification will benefit from more efficient procedures while even a 1361

firmware/specification downgrade will not do any harm because of a robust fall-back to version 1.0. 1362

A CMI message is defined as follows: 1363

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 57 of 96

MessageType = %x00 ; init 1364

MessageValue = CmiHead CmiRemainder 1365

CmiHead = OCTET 1366

CmiRemainder = *OCTET 1367

The permitted content and meaning of MessageValue is defined as follows: 1368

1. If the first byte (CmiHead) is 0: State "Connection data preparation". 1369

2. Else: RFU 1370

In this version of the specification, only CmiHead of MessageValue of a received message is analysed. 1371

CmiRemainder is reserved for future use. The following process (including state information) is 1372

defined and SHALL be performed: 1373

1. SME connection role "client": 1374

1.1. CMI_STATE_CLIENT_SEND: Client sends a CMI message with MessageValue = 0 to "server" 1375

and enters state CMI_STATE_CLIENT_WAIT immediately afterwards. 1376

2. SME connection role "server": 1377

2.1. CMI_STATE_SERVER_WAIT: "Server" waits for the CMI message from "client". 1378

2.2. CMI_STATE_SERVER_EVALUATE: "Server" evaluates the received message. 1379

2.2.1. If the received MessageType is not 0: "Server" sends a CMI message with 1380

MessageValue = 0 to "client" and closes the connection afterwards. 1381

2.2.2. If the received CmiHead has the decimal value 0: "Server" sends a CMI message with 1382

MessageValue = 0 to "client" and enters the SME connection state "Connection data 1383

preparation". 1384

2.2.3. If the received CmiHead has a decimal value greater than 0: "Server" sends a CMI 1385

message with MessageValue = 0 to "client" and closes the connection afterwards. 1386

3. SME connection role "client": 1387

3.1. CMI_STATE_CLIENT_WAIT: "Client" waits for the CMI message from "server". 1388

3.2. CMI_STATE_CLIENT_EVALUATE: "Client" evaluates the received message. 1389

3.2.1. If the received MessageType is not 0: "Client" closes the connection immediately. 1390

3.2.2. If the received CmiHead has the decimal value 0: "Client" enters the SME connection 1391

state "Connection data preparation". 1392

3.2.3. If the received CmiHead has a decimal value greater than 0: "Client" closes the 1393

connection immediately. 1394

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 58 of 96

Timeout procedure: 1395

The CMI process above begins as soon as a connection has been established (entering state 1396

CMI_INIT_START). This corresponds to the process steps CMI_STATE_CLIENT_SEND and 1397

CMI_STATE_SERVER_WAIT, respectively. Then, the following rules apply: 1398

1. For process step CMI_STATE_SERVER_WAIT, a timeout of CmiTimeout applies. If the server does 1399

not receive a message before this time elapses, it SHALL close the connection immediately. 1400

2. For process step CMI_STATE_CLIENT_WAIT, a timeout of CmiTimeout applies. If the client does 1401

not receive a message before this time elapses, it SHALL close the connection immediately. 1402

An SME User SHALL assign any value from 10 seconds to 30 seconds to CmiTimeout. 1403

Remark on CmiHead "RFU" and potential definitions in subsequent specification versions: 1404

In a subsequent version of this specification, values other than "0" may be defined. In fact, it is 1405

possible to define a multi-byte "extended CmiHead". Compatibility as well as fault tolerance can be 1406

preserved through the rule to reconnect with CmiHead "0" if a previous connection with another 1407

value failed. 1408

A brief overview of the CMI procedure is given in the following sequence diagram. 1409

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 59 of 96

 1410

Figure 9: CMI Message Sequence Example 1411

13.4.4 Connection Data Preparation 1412

If an SME User enters this state, it SHALL proceed with "Connection state Hello" (see 13.4.4.1). 1413

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 60 of 96

13.4.4.1 Connection State "Hello" 1414

13.4.4.1.1 Basic Definitions 1415

In this state, the SME Users negotiate whether they allow to continue with the next communication 1416

state or not. This concept enables implementations to give a user of a SHIP node some time to decide 1417

whether the communication partner can be trusted or not. From a process point of view, a 1418

connection that is not (yet) trusted is considered "PENDING", whereas it is "READY" as soon the 1419

connection is trusted (the terms "READY" and "PENDING" are defined in section 13.4.4.1.2). 1420

Remark (informative): Trusting a device or not is typically related to the phase when a device just 1421

presented its certificate and public key (see chapter 12) in order to allow a user to verify this 1422

information (provided there is a proper user interface). I.e. this procedure can start even before 1423

Connection Mode Initialisation begins (and in case of auto_accept, it can also be finished before CMI 1424

begins). In case of a real user based (manual) verification, it is likely that such a verification time is 1425

required at least for the very first establishment of a connection between two SHIP nodes. 1426

This state uses an SME "hello" message, which is defined as follows: 1427

MessageType = %x01 ; control 1428

MessageValue = SmeHelloValue 1429

SmeHelloValue = *OCTET 1430

The content of SmeHelloValue is defined as follows: The structure is defined by the SHIP root tag 1431

"connectionHello" (including the root tag "connectionHello") of the XSD 1432

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 1433

format of this structure MUST be JSON-UTF8. 1434

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

connectionHello.phase M The sender's phase during the

"hello" process (enumeration:

pending, ready, aborted). See

13.4.4.1.2.

connectionHello.waiting O Remaining time (in

milliseconds) granted by the

sender.

connectionHello.prolongationRequest O Request to prolong the

remaining time.

Table 14: Structure of SmeHelloValue of SME "hello" Message. 1435

The SME "hello" process does not require knowledge of the connection role (server or client). 1436

Instead, each of the SME Users SHALL execute the process as described below. 1437

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 61 of 96

13.4.4.1.2 Process Overview 1438

When this process is entered, an SME User SHALL be in exactly one of the following basic "Hello" 1439

states for a given connection to another node (depending on the trust in the connection, see 1440

13.4.4.1.1): 1441

1. READY 1442

This state MUST ONLY be entered if the communication partner is already trusted. In this state, 1443

the SME User is ready to proceed with the next state after "Hello" as soon as it receives from the 1444

communication partner that it is ready to proceed as well. The SME User will only wait for this 1445

information from the communication partner for a limited time. However, the communication 1446

partner can request a prolongation of this time. 1447

2. PENDING 1448

In this state, the SME User is not yet ready to proceed with the next state after "Hello". 1449

Nevertheless, it will only wait for a final "READY" information from the communication partner 1450

for a limited time, although the communication partner can request a prolongation of this time 1451

(this is the same principle as for state "READY"). Furthermore, the SME User must ensure to 1452

a. EITHER switch into state "READY" and inform the communication partner accordingly in 1453

time, 1454

b. OR request a prolongation of the time the communication partner waits for the "READY" 1455

information, 1456

c. OR report the abortion of this process if the SME User finally decides not to trust the 1457

communication partner. 1458

The third basic state "HELLO_OK" can only be accessed if certain conditions are fulfilled as described 1459

in the following sections. 1460

Please note: The connection state "Hello" is defined independent from any authentication 1461

procedures of any lower layer. It just assumes the knowledge whether a communication partner is 1462

trusted or not. This means that lower layers need to specify the procedures and conditions to trust 1463

another device and whether to keep this information persistently or not. 1464

13.4.4.1.3 Process Details 1465

Timer Overview: 1466

The following timers are defined: 1467

1. Wait-For-Ready-Timer 1468

Default value: T_hello_init (see below). 1469

Purpose: The communication partner must send its "READY" state (or request for prolongation") 1470

before the timer expires. 1471

2. Send-Prolongation-Request-Timer 1472

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 62 of 96

Purpose: Local timer to request for prolongation at the communication partner in time (i.e. 1473

before the communication partner's Wait-For-Ready-Timer expires). 1474

3. Prolongation-Request-Reply-Timer 1475

Purpose: Detection of response timeout on prolongation request. 1476

Each timer operates in a countdown mode. If a timer is activated, it MUST be initialized with a value 1477

greater than 0 in general, and according to the rules of the corresponding process step specifically. 1478

Details on the use of the timers are described for the appropriate process steps. See also 1479

"Implementation Advice". 1480

The following symbols for constant time values are used: 1481

1. T_hello_init: Any value from 60 seconds up to (and including) 240 seconds. An implementation 1482

can choose for any value of the specified range. However, this value SHALL be constant during a 1483

connection. This value SHOULD also be constant across different connections. 1484

2. T_hello_inc: The same value as T_hello_init. 1485

3. T_hello_prolong_thr_inc: 30 seconds. 1486

4. T_hello_prolong_waiting_gap: 15 seconds. 1487

5. T_hello_prolong_min: 1 second. 1488

States and Sub-states Overview: 1489

Depending on the basic state, the following sub-states are defined: 1490

1. Sub-states of basic state "READY": 1491

1.1. SME_HELLO_STATE_READY_INIT 1492

1.2. SME_HELLO_STATE_READY_LISTEN 1493

1.3. SME_HELLO_STATE_READY_TIMEOUT 1494

2. Sub-states of basic state "PENDING": 1495

2.1. SME_HELLO_STATE_PENDING_INIT 1496

2.2. SME_HELLO_STATE_PENDING_LISTEN 1497

2.3. SME_HELLO_STATE_PENDING_TIMEOUT 1498

General information on the basic state "READY": 1499

In this case, the SME User need not request a prolongation with the communication partner. Thus, 1500

Send-Prolongation-Request-Timer is not needed. Of course, this requires submitting information on 1501

the own "READY"-state to the communication partner. Consequently, any sub-element "waiting" for 1502

an SME "hello" message received from the communication partner can be ignored. 1503

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 63 of 96

General information on the basic state "PENDING": 1504

In this case, the use of Send-Prolongation-Request-Timer is required as soon as the "waiting" sub-1505

element from the communication partner is available, independent from the communication 1506

partner's phase (except for "aborted"). 1507

As described above, an SME User with state "PENDING" requires the communication partner to also 1508

announce its basic state "READY" in time. Thus, the Wait-For-Ready-Timer is required as long as this 1509

information has not been received. 1510

Sub-state SME_HELLO_STATE_READY_INIT: 1511

This is the first state an SME User SHALL enter if it is in the basic state "READY". In this state, it SHALL 1512

1. initialise Wait-For-Ready-Timer to the default value and start the timer, 1513

2. deactivate Send-Prolongation-Request-Timer and Prolongation-Request-Reply-Timer, 1514

3. send an SME "hello" update message (see definition below), 1515

4. enter state SME_HELLO_STATE_READY_LISTEN. 1516

Please note that this state does not evaluate any received messages. I.e. SME "hello" messages that 1517

are received before or during this state are subject of subsequent states. 1518

Sub-state SME_HELLO_STATE_READY_LISTEN: 1519

In this state, the SME User SHALL evaluate SHIP messages received from the communication partner. 1520

Only SME "hello" messages are considered here. The following rules apply: 1521

1. If the received message has sub-element "phase" set to "ready": Enter state "HELLO_OK". 1522

2. If the received message has sub-element "phase" set to "pending" and NO sub-element 1523

"prolongationRequest" is set: No specific action is required here (i.e. ignore the message). 1524

3. If the received message has sub-element "phase" set to "pending" and sub-element 1525

"prolongationRequest" is set to "true": 1526

a. Execute the common procedure to decide an incoming prolongation request. 1527

b. Execute the common procedure to send an SME "hello" update message. 1528

4. If the received message has sub-element "phase" set to "aborted": Execute the common "abort" 1529

procedure. 1530

If a received message is not an SME "hello" message while in this state, the SME User SHALL execute 1531

the common "abort" procedure. 1532

Sub-state SME_HELLO_STATE_READY_TIMEOUT: 1533

This state SHALL be entered if Wait-For-Ready-Timer expired. The SME User SHALL execute the 1534

common "abort" procedure. 1535

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 64 of 96

Sub-state SME_HELLO_STATE_PENDING_INIT: 1536

This is the first state an SME User SHALL enter if it is in the basic state "PENDING". In this state, it 1537

SHALL 1538

1. initialise Wait-For-Ready-Timer to the default value and start the timer, 1539

2. deactivate Send-Prolongation-Request-Timer and Prolongation-Request-Reply-Timer, 1540

3. send an SME "hello" update message (see definition below), 1541

4. enter state SME_HELLO_STATE_PENDING_LISTEN. 1542

Sub-state SME_HELLO_STATE_PENDING_LISTEN: 1543

In this state, the SME User SHALL evaluate SHIP messages received from the communication partner. 1544

Only SME "hello" messages are considered here. The following rules apply: 1545

1. If the received message has sub-element "phase" set to "ready" and NO sub-element "waiting": 1546

Execute the common "abort" procedure. 1547

2. If the received message has sub-element "phase" set to "ready" and sub-element "waiting" is set: 1548

a. Deactivate Wait-For-Ready-Timer and Prolongation-Request-Reply-Timer. 1549

b. If the received sub-element "waiting" is greater than or equal to T_hello_prolong_thr_inc: 1550

Initialize Send-Prolongation-Request-Timer to a new value as described below and (re-)start 1551

the timer. Otherwise (i.e. the received sub-element "waiting" is less than 1552

T_hello_prolong_thr_inc): Deactivate Send-Prolongation-Request-Timer. 1553

3. If the received message has sub-element "phase" set to "pending" and sub-element "waiting" is 1554

set and NO sub-element "prolongationRequest" is set: 1555

a. Deactivate Prolongation-Request-Reply-Timer. 1556

b. If the received sub-element "waiting" is greater than or equal to T_hello_prolong_thr_inc: 1557

Initialize Send-Prolongation-Request-Timer to a new value as described below and (re-)start 1558

the timer. Otherwise (i.e. the received sub-element "waiting" is less than 1559

T_hello_prolong_thr_inc): Deactivate Send-Prolongation-Request-Timer. 1560

4. If the received message has sub-element "phase" set to "pending" and NO sub-element "waiting" 1561

and sub-element "prolongationRequest" is set to "true": 1562

a. Execute the common procedure to decide an incoming prolongation request. 1563

b. Execute the common procedure to send an SME "hello" update message. 1564

5. If the received message has sub-element "phase" set to "aborted": Execute the common "abort" 1565

procedure. 1566

6. If the received message does not match any of the aforementioned schemes: Execute the 1567

common "abort" procedure. 1568

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 65 of 96

In addition, the following rules apply: 1569

1. If a received message is not an SME "hello" message while in this state, the SME User SHALL 1570

execute the common "abort" procedure. 1571

2. If an SME User finally decides to not trust the communication partner, the SME User SHALL 1572

execute the common "abort" procedure. 1573

The following rules SHALL be applied to calculate a new value for Send-Prolongation-Request-Timer: 1574

1. The new value SHALL be by T_hello_prolong_waiting_gap lower than the value from the received 1575

sub-element "waiting". 1576

2. Under normal operation, the value calculated above should be positive. However, in case the 1577

result is less than T_hello_prolong_min, the SME User SHALL disable the Send-Prolongation-1578

Request-Timer. 1579

Sub-state SME_HELLO_STATE_PENDING_TIMEOUT: 1580

This state SHALL be entered if any of the timers expired: 1581

1. If Wait-For-Ready-Timer expired: The SME User SHALL execute the common "abort" procedure. 1582

2. If Send-Prolongation-Request-Timer expired: 1583

a. The SME User SHALL send an SME "hello" message with the following content: 1584

i. Sub-element "phase" set to "pending". 1585

ii. Sub-element "prolongationRequest" set to "true". 1586

iii. No further sub-element shall be set. 1587

b. Initialize Prolongation-Request-Reply-Timer to the value of the last received sub-element 1588

"waiting" of the communication partner. If no sub-element "waiting" was received so far, the 1589

1.1-fold of the current value of Wait-For-Ready-Timer SHALL be used as the initialization 1590

value. 1591

c. Start Prolongation-Request-Reply-Timer. 1592

d. Return to the previous state. 1593

3. If Prolongation-Request-Reply-Timer expired: The SME User SHALL execute the common "abort" 1594

procedure. 1595

Switching Between Basic States "READY" and "PENDING": 1596

1. It is NOT permitted to switch from basic state "READY" and its sub-states to basic state 1597

"PENDING" and any of its sub-states. 1598

2. If an SME User switches from basic state "PENDING" to "READY", it SHALL 1599

a. deactivate Send-Prolongation-Request-Timer and Prolongation-Request-Reply-Timer, 1600

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 66 of 96

b. send an SME "hello" update message (with its new state "READY"), 1601

c. enter state 1602

i. EITHER "HELLO_OK" (only if one of the previously received SME "hello" messages had 1603

sub-element "phase" set to "ready") 1604

ii. OR SME_HELLO_STATE_READY_LISTEN otherwise. 1605

State HELLO_OK: 1606

All timers of connection state "Hello" can be deactivated. The SME User SHALL continue with 1607

"Connection state Protocol handshake" (see 13.4.4.2). 1608

Common "abort" procedure: 1609

This procedure SHALL be executed where referenced. The SME User SHALL 1610

1. deactivate all SME specific timers of connection state "Hello", 1611

2. send an SME "hello" message with sub-element "phase" set to "aborted" (further sub-elements 1612

SHALL NOT be set) if the connection is not already closed, 1613

3. close the connection (if the connection is not already closed). 1614

Common Procedure for Sending an SME "hello" Update Message: 1615

This procedure SHALL be executed where referenced. The SME User SHALL send an SME "hello" 1616

message with the following content: 1617

1. Sub-element "phase" set to 1618

a. "ready" in case of the basic state "READY", 1619

b. or "pending" in case of the basic state "PENDING". 1620

2. Sub-element "waiting" set to the current value of Wait-For-Ready-Timer if Wait-For-Ready-Timer 1621

is active. This sub-element SHALL NOT be set if the timer is not active. 1622

Further sub-elements SHALL NOT be set. 1623

Common Procedure to Decide an Incoming Prolongation Request: 1624

This procedure SHALL be executed where referenced. 1625

1. If an SME User accepts the prolongation request: It SHALL increase its Wait-For-Ready-Timer by 1626

T_hello_inc. 1627

2. Otherwise: No specific action required. 1628

Further rules apply: 1629

1. An SME User SHALL accept at least two prolongation requests. 1630

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 67 of 96

Implementation Advice: 1631

Several rules and procedures described above include instructions on the report of a state or 1632

response. The timers of this section SHALL NOT be used to delay such reports more than necessary. 1633

Example Sequence Diagrams: 1634

Example sequence diagrams for connection state "Hello" are shown in the subsequent figures: 1635

 1636

Figure 10: Connection State "Hello" Sequence Example Without Prolongation Request: "A" and "B" already trust each other; 1637
"B" is slower/delayed. 1638

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 68 of 96

 1639

Figure 11: Connection State "Hello" Sequence Example With Prolongation Request. 1640

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 69 of 96

13.4.4.2 Connection State "Protocol handshake" 1641

13.4.4.2.1 Basic Definitions 1642

In this state, the communication partners agree on the further SHIP protocol version and on the 1643

message format to continue with. 1644

This state uses an SME "protocol handshake" message and a dedicated error message. 1645

SME "Protocol Handshake" Message: 1646

The SME "protocol handshake" message is defined as follows: 1647

MessageType = %x01 ; control 1648

MessageValue = SmeProtocolHandshakeValue 1649

SmeProtocolHandshakeValue = *OCTET 1650

The content of SmeProtocolHandshakeValue is defined as follows: The structure is defined by the 1651

SHIP root tag "messageProtocolHandshake" (including the root tag "messageProtocolHandshake") of 1652

the XSD "SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. 1653

The format of this structure MUST be JSON-UTF8. 1654

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

messageProtocolHandshake.handshakeType M The kind of the handshake

information (enumeration:

announceMax, select).

messageProtocolHandshake.version M Parent element of SHIP

specification version

information.

messageProtocolHandshake.version.major M Version information: Major

version part.

messageProtocolHandshake.version.minor M Version information: Minor

version part.

messageProtocolHandshake.formats M Protocol format(s).

List of "format" (1..unbounded) M In general, the subsequent

child element "format" SHALL

be present at least one time

and CAN be present more than

one time. However, the

number of permitted

occurrences finally depends on

the phase of the protocol

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 70 of 96

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

handshake. See definitions in

the text for details!

The "format" instances of the

list SHALL have a unique value,

i.e. no two "format" values

may be identical.

messageProtocolHandshake.formats.format M Protocol format. See text for

permitted values.

Table 15: Structure of SmeProtocolHandshakeValue of SME "Protocol Handshake" Message. 1655

Permitted values for the child element "format" are "JSON-UTF8" and "JSON-UTF16" (without the 1656

quotation marks), but only "JSON-UTF8" is REQUIRED to be supported (see also 13.4.4.2.2). Other 1657

values are reserved for future use. An empty string is NOT a permitted value. 1658

SME "Protocol Handshake Error" Message: 1659

The SME "protocol handshake error" message is defined as follows: 1660

MessageType = %x01 ; control 1661

MessageValue = SmeProtocolHandshakeErrorValue 1662

SmeProtocolHandshakeErrorValue = *OCTET 1663

The content of SmeProtocolHandshakeErrorValue is defined as follows: The structure is defined by 1664

the SHIP root tag "messageProtocolHandshakeError" (including the root tag 1665

"messageProtocolHandshakeError") of the XSD "SHIP_TS_TransferProtocol.xsd". The default 1666

structure extensibility applies to this structure. The format of this structure MUST be JSON-UTF8. 1667

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

messageProtocolHandshakeError.error M Error number.

Table 16: Structure of SmeProtocolHandshakeErrorValue of SME "Protocol Handshake Error" Message. 1668

13.4.4.2.2 Compatibility Aspects 1669

In this version of the specification, the exchange of SME "protocol handshake" messages is 1670

exclusively executed with JSON-UTF8 as described above. 1671

Each communication partner MUST support each SHIP specification version from "1.0" up to and 1672

including their own maximum supported SHIP specification version. 1673

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 71 of 96

Each communication partner MUST support the format JSON-UTF8 (see also 13.4.4.2.1). 1674

Remark (informative): Subsequent versions of the SHIP specification may define a Connection Mode 1675

Initialization that permits a different protocol handshake. Even the omission of a handshake might be 1676

defined dependent on the circumstances. However, a fall-back mechanism to version 1.0 of the SHIP 1677

specification must be defined and preserved. 1678

13.4.4.2.3 Protocol Handshake Process 1679

Connections Roles: 1680

The concept requires the knowledge of the SME connection role (client, server). 1681

Timer overview: 1682

The following timer is defined: 1683

1. Wait-Timer 1684

Default value: 10 seconds. 1685

Purpose: The communication partner must provide the required protocol handshake information 1686

before the timer expires. 1687

State SME_PROT_H_STATE_SERVER_INIT: 1688

This is the first state a server SME User SHALL enter. In this state, it SHALL 1689

1. initialize Wait-Timer to the default value and start the timer, 1690

2. enter state SME_PROT_H_STATE_SERVER_LISTEN_PROPOSAL. 1691

State SME_PROT_H_STATE_CLIENT_INIT: 1692

This is the first state a client SME User SHALL enter. In this state, it SHALL 1693

1. send an SME "protocol handshake" message with the following content: 1694

a. Sub-element "handshakeType" set to "announceMax". 1695

b. Sub-element version (and its children) set to the maximum supported SHIP specification 1696

version: In this version of the specification, this means "major" MUST be set to "1" and 1697

"minor" MUST be set to "0". 1698

c. Sub-element "formats" set to all format values supported by the client. 1699

2. initialise Wait-Timer to the default value and start the timer, 1700

3. enter state SME_PROT_H_STATE_CLIENT_LISTEN_CHOICE. 1701

State SME_PROT_H_STATE_SERVER_LISTEN_PROPOSAL: 1702

In this state, a server SME User evaluates received messages from the client: 1703

1. If the received message is a valid SME "protocol handshake" message: The server SME User 1704

SHALL 1705

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 72 of 96

a. deactivate Wait-Timer, 1706

b. select the maximum supported SHIP specification version supported by both communication 1707

partners, 1708

c. select a single format supported by both communication partners, 1709

d. send an SME "protocol handshake" message with the following content: 1710

i. Sub-element "handshakeType" set to "select". 1711

ii. Sub-element version (and its children) set to the selected SHIP specification version. 1712

iii. Sub-element "formats" set to the selected format. 1713

e. re-initialize Wait-Timer to the default value and start the timer, 1714

f. enter state SME_PROT_H_STATE_SERVER_LISTEN_CONFIRM. 1715

2. Otherwise: Execute the common "abort" procedure with error type "unexpected message". 1716

State SME_PROT_H_STATE_CLIENT_LISTEN_CHOICE: 1717

In this state, a client SME User evaluates received messages from the server to analyse the server's 1718

selection: 1719

1. If the received message is a valid SME "protocol handshake" message: The client SME User SHALL 1720

a. deactivate Wait-Timer, 1721

b. verify if the received sub-element "handshakeType" is set to "select" and – in case the 1722

verification succeeded – continue with the next step, 1723

c. verify if the received sub-element "version" matches the client's capability and – in case the 1724

verification succeeded – continue with the next step, 1725

d. verify if the received sub-element "formats" contains a single format and matches the client's 1726

capability and – in case the verifications succeeded – continue with the next step, 1727

e. send the received SME "protocol handshake" message back to the server (this denotes the 1728

confirmation of the server's choice), 1729

f. enter state SME_PROT_H_STATE_CLIENT_OK. 1730

If any of the aforementioned verifications failed, the node SHALL execute the common "abort" 1731

procedure with error type "selection mismatch". 1732

2. Otherwise: Execute the common "abort" procedure with error type "unexpected message". 1733

State SME_PROT_H_STATE_SERVER_LISTEN_CONFIRM: 1734

In this state, a server SME User evaluates received messages from the client: 1735

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 73 of 96

1. If the received message is a valid SME "protocol handshake" message: The server SME User 1736

SHALL 1737

a. deactivate Wait-Timer, 1738

b. verify if the received message is identical to the message the server previously (in state 1739

SME_PROT_H_STATE_SERVER_LISTEN_PROPOSAL) submitted to the client and – in case the 1740

verification succeeded – continue with the next step, 1741

c. enter state SME_PROT_H_STATE_SERVER_OK. 1742

If any of the aforementioned verifications failed, the SME User SHALL execute the common 1743

"abort" procedure with error type "selection mismatch". 1744

2. Otherwise: Execute the common "abort" procedure with error type "unexpected message". 1745

Sub-state SME_PROT_H_STATE_TIMEOUT: 1746

This state SHALL be entered if Wait-Timer expired. The SME User SHALL execute the common "abort" 1747

procedure with error type "timeout". 1748

States SME_PROT_H_STATE_CLIENT_OK, State SME_PROT_H_STATE_SERVER_OK: 1749

As soon as an SME User enters this state, it SHALL switch to the selected SHIP specification version 1750

and selected format. Then, it SHALL proceed with "Connection state PIN verification". 1751

Example (informative): Before this state is reached, all messages are exchanged with the format 1752

JSON-UTF8 (in SHIP specification version 1.0). For this example, we assume there is a new SHIP 1753

specification version 2.1 available and a binary format "ASN.1-PER" and both SME Users agreed on 1754

this version and format. This means all messages MUST follow the protocol and format requirements 1755

as soon as the "…_OK" state is reached. This may include new values for MessageType and non-1756

textual (but compact, i.e. efficient) content of MessageValue. 1757

Common "abort" procedure: 1758

This procedure SHALL be executed where referenced. The SME User SHALL 1759

1. deactivate all SME specific timers of connection state "Protocol handshake", 1760

2. send an SME "protocol handshake error" message with sub-element "error" set to the proper 1761

value (see Table 17), 1762

3. close the connection. 1763

Value Error type

0 RFU

1 Timeout

2 unexpected message

3 selection mismatch

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 74 of 96

Value Error type

4-255 RFU

Table 17: Values of Sub-element "error" of messageProtocolHandshakeError. 1764

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 75 of 96

 1765

Figure 12: Connection State "Protocol Handshake" Message Sequence Example 1766

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 76 of 96

13.4.4.3 Connection State "PIN Verification" 1767

13.4.4.3.1 Introduction (Informative) 1768

The exchange of a PIN is a common procedure to gain a certain (minimum) trust level required to 1769

permit the exchange of sensitive data between authorized communication partners only. In general, 1770

a PIN based authorization can be considered a more secure methodology than a simple "push 1771

button" based method with "auto_accept". Consequently, successful PIN exchange might be 1772

mandatory for certain data that is "too sensitive" to be exchanged between communication partners 1773

that are introduced by "push button/auto_accept" only. See chapter 12 for more details. 1774

13.4.4.3.2 Basic Definitions 1775

In this state, the communication partners exchange information on their PIN requirements. 1776

This state uses SME messages for the PIN state, PIN input, and a dedicated error message. Broadly 1777

speaking, "PIN state" is used to inform the communication partner whether a PIN is expected. The 1778

message "PIN input" serves for the transport of a PIN to the owner of the PIN. The error message 1779

indicates if a PIN is wrong. 1780

SME "PIN state" Message: 1781

The SME "PIN state" message is defined as follows: 1782

MessageType = %x01 ; control 1783

MessageValue = SmeConnectionPinStateValue 1784

SmeConnectionPinStateValue = *OCTET 1785

The content of SmeConnectionPinStateValue is defined as follows: The structure is defined by the 1786

SHIP root tag "connectionPinState" (including the root tag "connectionPinState") of the XSD 1787

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 1788

format of this structure MUST be the format agreed with the protocol handshake (see 13.4.4.2). 1789

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

connectionPinState.pinState M The originator's PIN state (in

relation to the recipient). See

13.4.4.3.5.1.

connectionPinState.inputPermission O Information whether PIN

receipt is currently permitted

or not. See 13.4.4.3.5.1.

Table 18: Structure of SmeConnectionPinStateValue of SME "Pin state" message. 1790

SME "PIN input" Message: 1791

The SME "PIN input" message is defined as follows: 1792

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 77 of 96

MessageType = %x01 ; control 1793

MessageValue = SmeConnectionPinInputValue 1794

SmeConnectionPinInputValue = *OCTET 1795

The content of SmeConnectionPinInputValue is defined as follows: The structure is defined by the 1796

SHIP root tag "connectionPinInput" (including the root tag "connectionPinInput") of the XSD 1797

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 1798

format of this structure MUST be the format agreed with the protocol handshake (see 13.4.4.2). 1799

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

connectionPinInput.pin M The receiver's PIN.

Table 19: Structure of SmeConnectionPinInputValue of SME "Pin input" message. 1800

The sub-element "pin" MUST be set and interpreted as follows: The value range of the PIN is defined 1801

by section 12.5. The format of the PIN within sub-element "pin" of "PIN input" message is the same 1802

as the written format of section 12.5, but without any separators. Thus, the sub-element "pin" is a 1803

string of 8-16 contiguous hexadecimal characters (as specified in section 12.5), i.e. the decimal 1804

characters '0' to '9' and the Latin characters 'a' to 'f' and 'A' to 'F'. The verification of a PIN (i.e. the 1805

value of element "pin") SHALL NOT be case-sensitive. 1806

Examples (informative): If the written PIN (for the user) is "12AB C34D" (without quotation marks), 1807

the following strings show valid content for the element "pin": "12abc34d", "12ABc34d", 1808

"12ABC34D", etc. (without quotation marks; examples not exhaustive). 1809

SME "PIN error" Message: 1810

The SME "PIN error" message is defined as follows: 1811

MessageType = %x01 ; control 1812

MessageValue = SmeConnectionPinErrorValue 1813

SmeConnectionPinErrorValue = *OCTET 1814

The content of SmeConnectionPinErrorValue is defined as follows: The structure is defined by the 1815

SHIP root tag "connectionPinError" (including the root tag "connectionPinError") of the XSD 1816

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 1817

format of this structure MUST be the format agreed with the protocol handshake (see 13.4.4.2). 1818

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 78 of 96

Element name Mandatory/

Optional/

Not Valid

(NV)

Brief explanation

connectionPinError.error M Error number.

Table 20: Structure of SmeConnectionPinErrorValue of SME "Pin error" message. 1819

13.4.4.3.3 Basic Rules 1820

The device that owns (requires) a device PIN MUST NOT communicate this PIN to another device. 1821

Only the other direction is allowed. These rules can be expressed briefly as follows, where node "A" 1822

owns a "PIN A" and another node "X" is the communication partner: 1823

1. NOT ALLOWED: Send "PIN A" from left to right: Node A -----> Node X 1824

2. ALLOWED: Send "PIN A" from right to left: Node A <----- Node X 1825

Common security related rules on PINs (examples: which kind of device needs to have a PIN and 1826

request it from the communication partner; how is a PIN made available to a user; which conditions 1827

are defined to prevent "too simple PIN values"; how does a PIN value contribute to a trust level) are 1828

subject of chapter 12. 1829

13.4.4.3.4 Protection Against Brute Force Attempts 1830

Every verified and invalid PIN received from the communication partner is counted. If a node verifies 1831

a received PIN and declares it as invalid, it SHALL proceed as specified for the state 1832

SME_PIN_STATE_CHECK_ERROR AND impose a penalty to the communication partner according to 1833

the following rules: 1834

1. If the number of counted invalid PINs is less than three, NO penalty is required. 1835

2. If the number of counted invalid PINs ranges from three to five, the node SHALL apply a penalty 1836

as follows: The node SHALL enter the state SME_PIN_STATE_CHECK_BUSY_WAIT for a period of 1837

at least 10 seconds. This period SHOULD exceed 15 seconds only in case of increased security 1838

requirements. 1839

3. If the number of counted invalid PINs is greater than five, the node SHALL apply a penalty as 1840

follows: The node SHALL enter the state SME_PIN_STATE_CHECK_BUSY_WAIT for a period of at 1841

least 60 seconds. This period SHOULD exceed 90 seconds only in case of increased security 1842

requirements. 1843

In addition, the node SHALL implement countermeasures against attempts to bypass the 1844

aforementioned penalties. Among others, disconnecting the node or switching it off (regularly or 1845

suddenly, e.g. through power loss) SHALL NOT disable or weaken the penalties towards the 1846

communication partner that sent the invalid PIN. This requirement holds regardless of the number of 1847

communication partners a node is capable of distinguishing and (potentially) storing. 1848

Remark (informative): The aforementioned countermeasures may lead to modified PIN requirements 1849

(see 13.4.4.3.5.1) after re-powering/re-connection. E.g. if a penalty towards a communication 1850

partner was not completed before the disconnection, the "inputPermission" SHOULD be "busy" 1851

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 79 of 96

towards the re-connected communication partner until the penalty has been completed. In fact, if a 1852

node is not capable of persistently storing all communication partners with unfinished penalty, it 1853

may impose a general penalty (i.e. regardless of the communication partner/connection that is 1854

currently established) until the general penalty was completed. 1855

13.4.4.3.5 Process Details 1856

13.4.4.3.5.1 PIN Requirement - Communicated PIN States 1857

The sub-element connectionPinState.pinState of the SME "PIN state" message conveys the PIN 1858

requirement towards the communication partner, i.e. the communicated PIN state. Permitted values 1859

are: 1860

1. required 1861

The node requires to receive its own valid PIN from the communication partner. The next state 1862

"Connection data exchange" will not be reached until a received PIN was verified successfully. 1863

Note: Setting "pinState" to "required" should only be done for certain cases! In general, a SHIP 1864

node cannot know whether the other SHIP node has a user interface or equivalent possibility for 1865

PIN input. If a manufacturer of a SHIP device decides to set "pinState" to "required", the 1866

manufacturer should also provide a SHIP-based commissioning tool with PIN input. 1867

2. optional 1868

The node does not require its own valid PIN from the communication partner, but restricts data 1869

exchange. It is possible to proceed with the next state "Connection data exchange" without the 1870

correct PIN; however, the node limits the data exchange to only those data that do not require 1871

the PIN. As soon as the communication partner submits the valid PIN, the node grants access to 1872

all data. 1873

Note: This means that the communication partner is not forced to submit a PIN. I.e. the node 1874

would keep its "pinState" value to "optional" and would communicate according to state 1875

"Connection data exchange" (with reduced data) – but in parallel it would continue listening for 1876

potential PIN messages from the communication partner for a "late release" of the data 1877

exchange restrictions. 1878

3. pinOk 1879

The node already received its own valid PIN from the communication partner and grants 1880

unrestricted data exchange. It is possible to proceed with the next state "Connection data 1881

exchange" immediately. 1882

4. none 1883

The node does not have an own PIN and grants unrestricted data exchange. It is possible to 1884

proceed with the next state "Connection data exchange" immediately. 1885

Note: The above mentioned state "Connection data exchange" requires further conditions to be 1886

enabled. This is described in detail in the subsequent sections. 1887

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 80 of 96

The sub-element connectionPinState.inputPermission of the SME "PIN state" message expresses 1888

whether the owner of the PIN currently accepts an SME "PIN input" message for verification or not. 1889

Permitted values are: 1890

1. busy 1891

The node does currently not accept an SME "PIN input" message for verification. 1892

2. ok 1893

The node currently accepts an SME "PIN input" message for verification. 1894

The following dependencies between "pinState" and "inputPermission" are defined: 1895

1. If the value of "pinState" is "pinOk" or "none", the sub-element "inputPermission" MUST NOT be 1896

present. This case means the node does not accept an SME "PIN input" message. 1897

2. If the value of "pinState" is "required" or "optional", the sub-element "inputPermission" MUST 1898

be present. The value of "inputPermission" MUST be "busy" as long as a penalty towards the 1899

communication partner is in place (see 13.4.4.3.4); otherwise, it MUST be "ok". 1900

13.4.4.3.5.2 Process States 1901

Broadly speaking, a node needs to 1902

1. report its PIN requirement to a communication partner, 1903

2. verify received PINs (provided a PIN is required or at least optional), 1904

3. await the communication partner's PIN requirement, 1905

4. send a PIN to the communication partner (provided it is required or at least optional and the 1906

node wants to obtain unrestricted data exchange). 1907

The first two items belong to the major state SME_PIN_STATE_CHECK whereas the remaining items 1908

belong to the major state SME_PIN_STATE_ASK. These major states are independent from each 1909

other and SHALL also be executed in parallel. If connection state "PIN verification" is entered, the 1910

first sub-state of SME_PIN_STATE_CHECK to execute is SME_PIN_STATE_CHECK_INIT and the first 1911

sub-state of SME_PIN_STATE_ASK to execute is SME_PIN_STATE_ASK_INIT. 1912

Sub-state SME_PIN_STATE_CHECK_INIT: 1913

In this state, the node SHALL perform the following steps: 1914

1. It SHALL execute the common procedure to send the PIN requirement with the current 1915

requirements it has towards the communication partner. 1916

2. If the node's "pinState" is "required": 1917

a. State "Connection data exchange" MUST be disabled (i.e. this state must not be executed). 1918

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 81 of 96

b. State SME_PIN_STATE_CHECK_BUSY_WAIT SHALL be entered if the sub-element 1919

"inputPermission" is set to "busy", otherwise state SME_PIN_STATE_CHECK_LISTEN SHALL be 1920

entered. 1921

3. If the node's "pinState" is "optional": 1922

a. The common procedure to enable the state "Connection data exchange" SHALL be executed. 1923

b. State SME_PIN_STATE_CHECK_BUSY_WAIT SHALL be entered if the sub-element 1924

"inputPermission" is set to "busy", otherwise state SME_PIN_STATE_CHECK_LISTEN SHALL be 1925

entered. 1926

4. If the node's "pinState" is "pinOk" or "none", the common procedure to enable the state 1927

"Connection data exchange" SHALL be executed and state SME_PIN_STATE_CHECK_OK SHALL be 1928

entered. 1929

Sub-state SME_PIN_STATE_CHECK_LISTEN: 1930

In this state, the SME User SHALL evaluate SHIP messages received from the communication partner. 1931

When this state is entered, the sub-element "inputPermission" MUST already be set to "ok". 1932

Only SME "PIN verification" messages are considered here. The following rules apply: 1933

1. If the received PIN matches the node's PIN: 1934

a. Set the node's "pinState" to "pinOk" and remove (disable) the sub-element 1935

"inputPermission". 1936

b. Execute the common procedure to send the PIN requirement. 1937

c. Execute the common procedure to enable the state "Connection data exchange". 1938

d. Enter the state SME_PIN_STATE_CHECK_OK. 1939

2. If the received PIN DOES NOT match the node's PIN: 1940

a. Enter state SME_PIN_STATE_CHECK_ERROR. 1941

Sub-state SME_PIN_STATE_CHECK_ERROR: 1942

In this state, the SME User informs the communication partner that a wrong PIN has been received. 1943

The following steps SHALL be performed: 1944

1. Increase the number of counted invalid PINs. 1945

2. Execute the common procedure to send an SME "PIN error" message with the error code for 1946

"wrong PIN". 1947

3. If the number of counted invalid PINs DOES NOT require imposing a penalty according to the 1948

rules of section 13.4.4.3.4: Enter state SME_PIN_STATE_CHECK_LISTEN. 1949

4. If the number of counted invalid PINs DOES require imposing a penalty according to the rules of 1950

section 13.4.4.3.4: Enter state SME_PIN_STATE_CHECK_BUSY_INIT. 1951

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 82 of 96

Sub-state SME_PIN_STATE_CHECK_BUSY_INIT: 1952

In this state, the SME User prepares a penalty (see 13.4.4.3.4). The following steps SHALL be 1953

performed: 1954

1. Set the node's sub-element "inputPermission" to "busy". 1955

2. Execute the common procedure to send the PIN requirement. 1956

3. Enter state SME_PIN_STATE_CHECK_BUSY_WAIT. 1957

Sub-state SME_PIN_STATE_CHECK_BUSY_WAIT: 1958

In this state, the SME User shall impose a penalty according to 13.4.4.3.4. This means that the SME 1959

User remains in this state until the end of the penalty's duration. When this state is entered, the sub-1960

element "inputPermission" MUST already be set to "busy". The following steps SHALL be performed: 1961

1. As long as the duration of the penalty has not expired: 1962

a. For every received SME "PIN input" message, execute the common procedure to send the 1963

PIN requirement. 1964

2. As soon as the duration of the penalty expires: 1965

a. Set the node's sub-element "inputPermission" to "ok". 1966

b. Execute the common procedure to send the PIN requirement. 1967

c. Enter state SME_PIN_STATE_CHECK_LISTEN. 1968

Note: In this state, received PINs are NOT evaluated and are NOT counted. 1969

Sub-state SME_PIN_STATE_CHECK_OK: 1970

The SME User SHALL silently discard any SME "PIN input" message. 1971

Note: The state branch "SME_PIN_STATE_CHECK" ends here, i.e. no further action is required. 1972

Whether a next state is enabled is not determined here. Instead, this is determined where the 1973

common procedure to enable the state "Connection data exchange" is referenced. 1974

Sub-state SME_PIN_STATE_ASK_INIT: 1975

In this state, the SME User SHALL wait for the receipt of an SME "PIN state" message before any 1976

other action of this state is performed. Until then, no other message of connection state "PIN 1977

verification" SHALL be evaluated. Afterwards, the SME User SHALL enter state 1978

SME_PIN_STATE_ASK_PROCESS. 1979

However, the SME User SHALL close the connection if this state (SME_PIN_STATE_ASK_INIT) lasts 1980

more than 10 seconds. 1981

Sub-state SME_PIN_STATE_ASK_PROCESS: 1982

In this state, the SME User evaluates and processes received messages according to the following 1983

rules: 1984

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 83 of 96

1. The SME User SHALL close the connection if any of the rules of section 13.4.4.3.5.1 on the sub-1985

elements of a received message are not fulfilled. 1986

2. A received SME "PIN error" message with the sub-element "error" set to the value for "wrong 1987

PIN" SHALL be interpreted by the SME User as follows: An SME "PIN input" message previously 1988

submitted to the communication partner contained the wrong PIN. The SME User SHOULD wait 1989

for a new SME "PIN state" message. 1990

3. For every received SME "PIN state" message with sub-element "pinState" set to a value that is 1991

NOT "required", the SME User SHALL execute the common procedure to enable the state 1992

"Connection data exchange". 1993

4. A received SME "PIN state" message with the sub-element "inputPermission" present and set to 1994

"busy" SHALL be interpreted by the SME User as follows: The communication partner is currently 1995

not ready to evaluate any SME "PIN input" message. The node SHOULD wait until the 1996

communication partner indicates being ready for an SME "PIN input" message. However, the 1997

node CAN send an SME "PIN input" message before the communication partner indicates being 1998

ready for this message. 1999

Remark (informative): The latter case (sending a new PIN before the communication partner 2000

indicates being ready) only makes sense to get a confirmation of the state after an "unexpectedly 2001

long" period of the assumed penalty. 2002

5. A received SME "PIN state" message with the sub-element "inputPermission" present and set to 2003

"ok" SHALL be interpreted by the SME User as follows: The communication partner is currently 2004

ready to evaluate an SME "PIN state" message. The node SHALL also evaluate sub-element 2005

"pinState" and decide whether to send an SME "PIN input" message or not. 2006

6. A received SME "PIN state" message with the sub-element "pinState" set to "required" or 2007

"optional" SHALL be interpreted and processed by the SME User as follows: The node SHALL also 2008

evaluate sub-element "inputPermission" and decide whether to send an SME "PIN input" 2009

message or not. 2010

7. A received SME "PIN state" message with the sub-element "pinState" set to "pinOk" or "none" 2011

SHALL be interpreted and processed by the SME User as follows: The node SHALL enter the state 2012

SME_PIN_STATE_ASK_OK. 2013

8. If a node needs to decide whether to send an SME "PIN input" message or not, the following 2014

rules apply: 2015

a. If a received "pinState" value is set to "required", the SME User SHALL 2016

i. EITHER execute the common procedure to send an SME "Pin input" message (provided 2017

that sub-element "inputPermission" is set to "ok" and the SME User has a PIN to send) 2018

ii. OR close the connection. 2019

b. If a received "pinState" value is set to "optional", the SME User SHALL 2020

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 84 of 96

i. EITHER enter state SME_PIN_STATE_ASK_RESTRICTED_OK (i.e. the SME User does not 2021

require unrestricted data exchange with the communication partner) 2022

ii. OR execute the common procedure to send an SME "Pin input" message (provided that 2023

sub-element "inputPermission" is set to "ok" and the SME User has a PIN to send) 2024

iii. OR close the connection. 2025

9. If a received SME "PIN state" message had "pinState" value set to "required" or "optional" and 2026

the SME User sent an SME "PIN input" message, the SME User SHALL wait for a new SME "PIN 2027

state" message for at least 30 seconds and at most 120 seconds before deciding to continue in 2028

this state or close the connection. 2029

Note: This rule is independent from decisions on a retry to send a PIN. It just focuses on the lack 2030

of a "PIN state" update (esp. with "inputPermission" either "busy" or "ok") from the 2031

communication partner. 2032

10. This state remains enabled unless stated otherwise. This also means that the SME User will 2033

continue listening for incoming messages as described above. 2034

Sub-state SME_PIN_STATE_ASK_RESTRICTED_OK: 2035

The SME User SHALL silently discard any SME "PIN error" message. It SHALL keep a "PIN state" 2036

message (only the latest message is required; this message SHALL NOT be kept it in case a connection 2037

is closed). 2038

Note: The state branch "SME_PIN_STATE_ASK" ends here, i.e. no further action is required. Whether 2039

a next state is enabled is not determined here. Instead, this is determined where the common 2040

procedure to enable the state "Connection data exchange" is referenced. 2041

However, if an SME User wants to submit a PIN on a later occasion, it can take the last SME "PIN 2042

state" message and enter state SME_PIN_STATE_ASK_PROCESS. 2043

Sub-state SME_PIN_STATE_ASK_OK: 2044

The SME User SHALL silently discard any SME "PIN error" or "PIN state" message. 2045

Note: The state branch "SME_PIN_STATE_ASK" ends here, i.e. no further action is required. Whether 2046

a next state is enabled is not determined here. Instead, this is determined where the common 2047

procedure to enable the state "Connection data exchange" is referenced. 2048

Common Procedure to Send the PIN Requirement: 2049

This procedure SHALL be executed where referenced. 2050

The SME User SHALL send an SME "PIN state" message with sub-element "pinState" set according to 2051

the node's PIN requirement towards the communication partner (see 13.4.4.3.5.1). The sub-element 2052

"inputPermission" SHALL be omitted or set as required and according to the rules expressed in 2053

13.4.4.3.5.1. 2054

Common Procedure to Send an SME "PIN error" Message: 2055

This procedure SHALL be executed where referenced. 2056

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 85 of 96

The SME User SHALL send an SME "PIN error" message with sub-element "error" set to the 2057

appropriate value (see Table 21). 2058

Value Error type

0 RFU

1 wrong PIN

4-255 RFU

Table 21: Values of Sub-element "error" of connectionPinError. 2059

Common procedure to Send an SME "PIN input" message: 2060

This procedure SHALL be executed where referenced. 2061

The SME User SHALL send an SME "PIN input" message with sub-element "pin" set to the value 2062

required by the communication partner. 2063

Common procedure to Enable the State "Connection data exchange": 2064

This procedure SHALL be executed where referenced. 2065

The SME User SHALL enable the state "Connection data exchange" if and only if all of the following 2066

rules are fulfilled: 2067

1. The node's own PIN requirement element "pinState" towards the communication partner is NOT 2068

"required". 2069

2. The communication partner's PIN requirement is available AND its element "pinState" is available 2070

AND is NOT "required". 2071

Enabling the state "Connection data exchange" means this state shall be executed regardless of any 2072

(parallel) states of "Connection state PIN verification". Depending on the element "pinState", the 2073

SME User SHALL also adjust the restriction of data exchange as mentioned in 13.4.4.3.5.1 2074

accordingly. 2075

A brief overview of the PIN verification procedure is given in the following sequence diagrams. 2076

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 86 of 96

 2077

Figure 13: Connection State "PIN verification" Message Sequence Example (Begin) 2078

13.4.5 Connection Data Exchange 2079

13.4.5.1 General Rules 2080

Specification Versions and "Base Specification" 2081

A specification may exist in multiple versions. The first version is called "base specification" and 2082

denotes the unique origin of the other versions. 2083

General Compatibility Rules for a Given Specification Sequence 2084

Subsequently, the term "content" denotes a data instance that matches a given specification. The 2085

compatibility of specifications is immediately related to the question how "content" of different 2086

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 87 of 96

specification versions needs to be processed. Specification versions are compatible with each other if 2087

the following rules apply: 2088

1. The base specification must provide rules for forward compatibility. This means it must define 2089

how any succeeding version can define additional content without breaking compatibility with 2090

existing implementations: An implementation that is based on the base specification must be 2091

able to gracefully accept and process "content" that is based on a compatible successor of the 2092

base specification. The processing of "content" SHALL include at least the parts that are already 2093

defined in the base specification. It MAY well skip the unknown parts. 2094

2. Each compatible successor of the base specification must provide rules for forward compatibility 2095

as well. These rules MUST NOT break the compatibility rules of the base specification. 2096

3. Each version of a specification has zero or one immediate successors. No more immediate 2097

successors are permitted. 2098

4. Each version of a specification has zero or one immediate predecessors. No more immediate 2099

predecessors are permitted. 2100

5. An implementation that is based on a given version of the specification must be able to gracefully 2101

accept and process "content" that is based on a compatible predecessor of the version. The 2102

processing of "content" SHALL include the whole content. 2103

13.4.5.2 Message "data" 2104

13.4.5.2.1 Purpose and Structure 2105

The element "data" of the XSD "SHIP_TS_TransferProtocol.xsd" is used to exchange higher level 2106

protocol data (e.g. SPINE) between two SHIP nodes. The structure is briefly described in Table 22. 2107

Details on the elements are given in subsequent sections. 2108

Element name Mandatory/

Optional/

Not Valid (NV)

Brief explanation

data. header M See 13.4.5.2.3.

data. header. protocolId M Identifies how "payload" MUST be evaluated,

see 13.4.5.2.4.

data. payload M Contains data of the protocol stated in the

element protocolId (see 13.4.5.2.5).

data. extension O Parent element for manufacturer specific

extensions, see 13.4.5.2.6.

data. extension. extensionId O Identifier for content of elements "binary",

"string".

data. extension. binary O Binary data.

data. extension. string O Textual data.

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 88 of 96

Table 22: Structure of MessageValue of "data" Message. 2109

The complete "data" message is defined as follows: 2110

MessageType = %x02 ; data 2111

MessageValue = DataValue 2112

DataValue = *OCTET 2113

The content of DataValue is defined as follows: The structure is defined by the SHIP root tag "data" 2114

(including the root element "data"). The default structure extensibility applies to this structure. The 2115

format of this structure MUST be the format agreed with the protocol handshake (see 13.4.4.2). 2116

13.4.5.2.2 Extensibility Rules 2117

The "default structure extensibility" applies for these parts: 2118

1. The first level of "data". 2119

2. The element data.header (recursive). 2120

3. The first level of "data.extension". 2121

13.4.5.2.3 Element "header" 2122

This element serves as header for the remaining content of element "data". The sender of a message 2123

MUST set all information as described in the table and as follows. 2124

13.4.5.2.4 Element "protocolId" 2125

Introduction (Informative) 2126

This element announces how the content of "payload" MUST be evaluated. Within a software 2127

implementation, it permits to select a specific parser esp. in case of potentially conflicting 2128

specifications. This applies even in case of potential future binary formats. 2129

Rules on protocolId 2130

1. Permitted values for protocolId are defined by the SHIP specification authority only. 2131

2. The value always denotes the "base specification" for the content of "payload", even if the 2132

content is based on a newer compatible version of the specification. 2133

3. A recipient that encounters an unknown value of protocolId SHALL silently skip the received 2134

message. 2135

Note: Only those specifications can be assigned a value for protocolId that fulfil further requirements 2136

demanded by the SHIP specification. 2137

13.4.5.2.5 Element "payload" 2138

This element takes content that MUST match a compatible version of the base specification as 2139

determined by the value of protocolId. The content of payload MUST itself permit to evaluate it 2140

properly with regards to the specification sequence determined by the value of protocolId. 2141

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 89 of 96

The extensibility rule of payload is determined by the authority of the base specification that is given 2142

by the value of protocolId. For content defined by the SHIP specification, the rule "default structure 2143

extensibility (recursive)" applies. 2144

Remarks (Informative) 2145

1. Typically, this means the content should start with a "unique" root tag (or "unique" type or data 2146

identification in case of a binary format). Together with the value of protocolId, it is then possible 2147

to identify which compatible definitions of the proper specification sequence apply. This also 2148

means that the content of payload and protocolId must be sufficient to identify the definition of 2149

the content. I.e. no further information (as from device discovery, e.g.) is required to know which 2150

definition applies. 2151

2. Please also note these rules only address the identification of the definition. They do NOT 2152

address questions on the purpose of the content (i.e. questions on specific processes or contexts 2153

that are related to the specific content). 2154

3. The development of a specification sometimes also includes the definition of new types or data 2155

(i.e. content) for a new version of the specification. Nevertheless, only the base specification 2156

needs to be referenced in protocolId as new definitions (rather than modifications of existing 2157

definitions) just extend a specification. However, such extensions must also be done according to 2158

all compatibility rules. This requires special care especially in case of binary formats. 2159

4. The SME Protocol Handshake includes an agreement of the SME message format to be used 2160

between two communication partners. This format applies to the SHIP "payload" element and its 2161

content as well. However, it does NOT determine which specific types or conversion rules have 2162

to be applied for the protocolId specific content of "payload". 2163

To give an example: The handshake may end in JSON-UTF16 as format, for example. In this case, 2164

the complete native SHIP MessageValue for "Data" exchange (see section 13.4.5.2.1) must be 2165

formatted in JSON-UTF16. This includes the first "data" key and also the "payload" key, among 2166

others. The value of "payload" must as well be formatted in JSON-UTF16. However, the SHIP 2167

specification DOES NOT rule which JSON type has to be used as value type of "payload". For an 2168

assumed procotolId "abc", there may be a specific transformation rule to use a JSON string in any 2169

case. For an assumed protocolId "def", it may be a JSON object, e.g. Finally, this means that it is 2170

recommended to consider "payload" as an opaque – but well-formatted – container. 2171

13.4.5.2.6 Element "extension" 2172

This element can be used to extend content from payload with manufacturer specific data. The sub-2173

element "extensionId" MAY be used by a manufacturer to identify the kind of content in the 2174

(optional) sub-elements "binary" and "string". However, the use of these elements is manufacturer-2175

specific and not detailed further in this specification. 2176

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 90 of 96

13.4.6 Access Methods Identification 2177

13.4.6.1 Introduction 2178

This section discusses a possibility for the device that is currently the connection server to fetch 2179

information from the current connection client for a potential "reverse re-connection". The following 2180

example shall explain this briefly. 2181

Subsequently, we assume SHIP device "A" got information on how to connect another SHIP device 2182

"B" (e.g. from service discovery), but has not had any connection with device "B" before. This means 2183

device "A" finally has the IP address and port number of device "B" and establishes a connection for 2184

the first time. Device "A" is the connection client and device "B" the connection server. Any intended 2185

connection termination processes or sudden interrupts are no problem for a reconnection as long as 2186

device "A" initiates the reconnection again. However, there may be cases where it is favoured or 2187

even required that device "B" initiates a connection to device "A" under certain circumstances. In 2188

such cases, there is a need for device "B" to have proper information on how to find and connect to 2189

device "A". In general, this cannot be derived from device "A"'s socket of the first connection (i.e. 2190

where device "A" is a connection client), as server and client sockets typically differ. Furthermore, IP 2191

addresses of devices change in many situations. 2192

To overcome this situation, the section describes a method to query device "A" for its access 2193

methods. 2194

13.4.6.2 Basic Definitions 2195

In this section, an SME User can request the "access methods" of the communication partner. 2196

However, the support of this methodology is not mandatory in all cases. Details on the support are 2197

explained in subsequent sections. 2198

The state "Access Methods Identification" can run in parallel to connection data exchange. In fact, 2199

this state MUST NOT be entered before connection data exchange is entered (i.e. the "access 2200

methods" exchange does NOT apply for earlier states like "hello" or "CMI", e.g.). 2201

SME "Access methods request" Message: 2202

The SME "Access methods request" message is defined as follows: 2203

MessageType = %x01 ; control 2204

MessageValue = SmeConnectionAccessMethodsRequestValue 2205

SmeConnectionAccessMethodsRequestValue = *OCTET 2206

The content of SmeConnectionAccessMethodsRequestValue is defined as follows: The structure is 2207

defined by the SHIP root tag "accessMethodsRequest" (including the root tag 2208

"accessMethodsRequest") of the XSD "SHIP_TS_TransferProtocol.xsd". The default structure 2209

extensibility applies to this structure. The format of this structure MUST be the format agreed with 2210

the protocol handshake (see 13.4.4.2). 2211

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 91 of 96

Element name Mandatory/

Optional/

Not Valid (NV)

Brief explanation

accessMethodsRequest M The request for the recipient's access

methods.

 Note: Subsequent versions of this

specification may define (optional) sub-

elements of accessMethodsRequest.

Table 23: Structure of SmeConnectionAccessMethodsRequestValue of SME "Access methods request" message. 2212

SME "Access methods" Message: 2213

The SME "Access methods" message is defined as follows: 2214

MessageType = %x01 ; control 2215

MessageValue = SmeConnectionAccessMethodsValue 2216

SmeConnectionAccessMethodsValue = *OCTET 2217

The content of SmeConnectionAccessMethodsValue is defined as follows: The structure is defined by 2218

the SHIP root tag "accessMethods" (including the root tag "accessMethods") of the XSD 2219

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 2220

format of this structure MUST be the format agreed with the protocol handshake (see 13.4.4.2). 2221

Element name Mandatory/

Optional/

Not Valid (NV)

Brief explanation

accessMethods M The originator's access methods.

accessMethods.id M The originator's unique ID or an empty

string if the originator does not have such

an ID:

This element SHALL be set to the unique ID

if the originator of the SME "Access

methods" message has such a unique ID.

Otherwise, the element SHALL be set to an

empty string.

accessMethods.dnsSd_mDns O SHALL be present if the originator provides

its SHIP service via service discovery as

specified in chapter 7. Please note that this

REQUIRES that the originator has a unique

ID and consequently the element

"accessMethods.id" MUST contain this

value.

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 92 of 96

Element name Mandatory/

Optional/

Not Valid (NV)

Brief explanation

Note: Subsequent versions of this

specification may define (optional) sub-

elements of

accessMethodsRequest.dnsSd_mDns.

accessMethods.dns O SHALL be present if the originator provides

its SHIP service with unicast DNS.

accessMethods.dns.uri M The URI where the originator provides its

SHIP service. Please see also constraints

defined in the text.

Table 24: Structure of SmeConnectionAccessMethodsValue of SME "Access methods" message. 2222

The element "accessMethods.dns.uri" can take a URI as specified by IETF RFC 7320. However, this 2223

version of the SHIP specification considers only the URI scheme "wss" as used by WebSockets and 2224

defined by IETF RFC 6455. 2225

Roles and Symbols: 2226

Either side can request for the communication partner's "access methods" information. However, 2227

obligations on support and information differ depending on the role. 2228

Subsequently, the following symbols are used: 2229

1. DEV-SERVER 2230

This symbol is used for a device with the connection role "server". 2231

2. DEV-CLIENT 2232

This symbol is used for a device with the connection role "client". 2233

Please note the roles "server" and "client" denote only an aspect of the connection. They DO NOT 2234

denote an aspect of a specific functionality. 2235

Further symbols for two devices "A" and "B" will be defined in section 13.4.7.1.1. 2236

13.4.6.2.1 Process Details 2237

There is no specific requirement in which case an SME "Access methods request" message needs to 2238

be sent. However, please consider the recommendations in section 13.4.6.2.2. 2239

The recipient of an SME "Access methods request" message SHALL respond with an SME "Access 2240

methods" message. The sender of the aforementioned SME "Access methods request" message CAN 2241

close the connection according to section 13.4.7 if it does not receive a proper SME "Access 2242

methods" message within 60 seconds. 2243

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 93 of 96

Unsolicited SME "Access methods" message SHALL NOT be sent. I.e. it SHALL ONLY be sent upon a 2244

received SME "Access methods request". 2245

The recipient of an SME "Access methods" message SHALL store the received information 2246

persistently for cases where it needs to initiate a connection to the originator of the message. 2247

13.4.6.2.2 Recommendations 2248

The device DEV-SERVER SHOULD request for DEV-CLIENT's access methods if DEV-SERVER must be 2249

able to initiate a connection to the current DEV-CLIENT under certain circumstances but has no 2250

proper information so far. 2251

Note: This specification does not describe binding or subscription processes. However, such use 2252

cases are typical for higher layers. Imagine device "A" is DEV-CLIENT and connects to device "B" (DEV-2253

SERVER) and subscribes to some data provided by device "B". I.e. it asks device "B" to submit data 2254

changes to device "A". Such cases typically intend that device "B" is also able to establish a 2255

connection to device "A". Thus, device "B" SHOULD request for device "A"'s "Access methods" 2256

information as long as device "B" is DEV-SERVER. 2257

13.4.7 Connection Termination 2258

13.4.7.1 Basic Definitions 2259

In this state, the SME Users announce or negotiate the termination of a connection. This denotes the 2260

regular end of a connection in contrast to a sudden connection interrupt or failure. However, the 2261

methods described here do NOT apply in general, i.e. they apply only for the states and situations 2262

described below. 2263

This state can run in parallel to connection data exchange (in order to finish a pending "data" 2264

message before the connection is finally closed, e.g.). In fact, this state MUST NOT be entered before 2265

connection data exchange is entered (i.e. the termination process does NOT apply for earlier states 2266

like "hello" or "CMI", e.g.). 2267

This state uses an SME "close" message which is defined as follows: 2268

MessageType = %x03 ; end 2269

MessageValue = SmeCloseValue 2270

SmeCloseValue = *OCTET 2271

The content of SmeCloseValue is defined as follows: The structure is defined by the SHIP root tag 2272

"connectionClose" (including the root tag "connectionClose") of the XSD 2273

"SHIP_TS_TransferProtocol.xsd". The default structure extensibility applies to this structure. The 2274

format of this structure MUST be JSON-UTF8. 2275

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 94 of 96

Element name Mandatory/

Optional/

Not Valid (NV)

Brief explanation

connectionClose.phase M The sender's phase during the "close"

process (enumeration: announce,

confirm).

connectionClose.maxTime O Remaining time (in milliseconds)

granted by the sender.

connectionClose.reason O Reason for the termination. See

13.4.7.1.1.

Table 25: Structure of SmeCloseValue of SME "close" Message. 2276

The SME "close" process does not require knowledge of the connection role (server or client). 2277

Instead, each of the SME Users SHALL execute the process as described subsequently. 2278

13.4.7.1.1 Process Overview 2279

Either side can initiate a connection termination. The respective other side SHALL confirm the 2280

termination request accordingly. If – for any reason – a confirmation is not sent or not received in 2281

time, the requesting side SHALL close the connection and the respective other side SHALL expect the 2282

connection to be closed. 2283

Subsequently the following symbols are used: 2284

1. DEV-A 2285

This symbol is used for a device that initiates a connection termination. 2286

2. DEV-B 2287

This symbol is used for the communication partner of DEV-A. 2288

The reason to close a connection SHALL also be part of the message (sub-element "reason"). The 2289

following reasons are defined: 2290

1. unspecific 2291

This value SHALL be used if no other value fits better. 2292

Remark (informative): This value typically denotes a rather temporary disconnection (e.g. 2293

because a device has limited connection capabilities – it may just support one active connection 2294

but needs to exchange data with multiple devices; e.g. the device needs to reboot for a firmware 2295

update). This means it is likely that it is possible to re-establish a connection later on in order to 2296

continue with next/remaining data exchange. 2297

2. removedConnection 2298

This value denotes the removal of the respective node from the list of "known" or "accepted" 2299

devices. 2300

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 95 of 96

Remark (informative): This value does not mean a reconnection will not be possible at a later 2301

time. However, assuming a reconnection is executed, the device will be treated like a new or 2302

unknown device. 2303

13.4.7.1.2 Process Details 2304

Rules for DEV-A: 2305

1. If an SME User wants to initiate a connection termination, it SHALL send an SME "close" message 2306

to the communication partner with the following content: 2307

a. Sub-element "phase" set to "announce". 2308

b. Sub-element "maxTime" set to a value when DEV-A will close the connection at the latest 2309

(i.e. even if no confirmation from DEV-B was received). The value denotes the duration in ms 2310

(milliseconds), starting from the time the message is sent. 2311

c. Sub-element "reason" set to a proper value (see 13.4.7.1.1). 2312

2. If an SME User initiated a connection termination, it SHALL close the connection latest after a 2313

duration of its announced "maxTime". I.e. the connection SHALL then be closed even if no 2314

confirmation from DEV-B was received. 2315

3. If an SME User initiated a connection termination and receives a confirmation from DEV-B in time 2316

(i.e. before the announced duration "maxTime" elapsed) it SHALL close the connection 2317

immediately. 2318

Rules for DEV-B: 2319

1. If an SME User receives a connection termination, it SHALL prepare stopping its state 2320

"connection data exchange" before the received duration of "maxTime" expires. If this was 2321

achieved in time and the connection is still not closed, it SHALL send an SME "close" message to 2322

the communication partner, with sub-element "phase" set to "confirm" and no other sub-2323

element set. Afterwards, it SHALL close the connection. 2324

2. If an SME User receives a connection termination but does not manage to submit the 2325

confirmation in time, it SHALL consider the connection as closed after the received duration of 2326

"maxTime" expired. 2327

General rules: 2328

1. It can happen that both sides initiate a connection termination at almost the same time. In this 2329

case, each side is both a DEV-A as well as a DEV-B (with different parameters, esp. different 2330

"maxTime"). In this case, the confirmation that is sent first closes the connection (i.e. there is no 2331

need for a confirmation from both sides). However, the respectively received "reason" values 2332

need to be considered with regards to the importance. I.e. a received "removedConnection" is 2333

more important than the value "unspecific". 2334

The execution of reconnection attempts is application specific in general. However, in case of a 2335

regular termination process, it SHOULD be avoided to attempt a reconnection immediately. 2336

EEBus TS - Smart Home IP V1.0.1

Copyright © 2019 EEBus Initiative e.V. All rights reserved. Page 96 of 96

14 Well-known protocolId 2337

protocolId Definition

ee1.0
EEBus specifications that are compatible to the SPINE data model specification

base version 1.0.

 2338

 2339

	Table of contents
	Table of contents
	List of figures
	List of tables
	List of tables
	Introduction
	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Architecture Overview
	4.1 General Considerations On Closing Communication Channels
	4.2 SHIP Node Parameters

	5 Registration
	5.1 Successful Registration

	6 Reconnection
	7 Discovery
	7.1 Service Instance
	7.2 Service Name
	7.3 Multicast DNS Name
	7.3.1 Default Records
	7.3.2 TXT Record

	8 TCP
	8.1 Limited Connection Capabilities
	8.2 Online Detection
	8.3 TCP Connection Establishment
	8.4 Retransmission Timeout

	9 TLS
	9.1 Cipher Suites
	9.2 Maximum Fragment Length
	9.3 TLS Compression
	9.4 Server Name Indication
	9.5 Renegotiation
	9.6 Session Resumption

	10 WebSocket
	10.1 TLS Dependencies
	10.2 Opening Handshake
	10.3 Data Framing
	10.4 Connection Keepalive

	11 Message Representation Using JSON Text Format
	11.1 Introduction
	11.2 Definitions
	11.3 Examples For Each Type
	11.4 XML to JSON Transformation
	11.4.1 Scope
	11.4.2 XSD Types
	11.4.3 Element Occurrences
	11.4.4 Simple Types
	11.4.5 Complex Types
	11.4.6 Rules
	11.4.7 Example Transformations

	11.5 JSON to XML Transformation
	11.5.1 Scope
	11.5.2 Rules
	11.5.3 Example Transformation

	12 Key Management
	12.1 Certificates
	12.1.1 SHIP Node Certificates
	12.1.2 Web Server Based SHIP Node Certificates

	12.2 SHIP Node Specific Public Key
	12.2.1 Public Key Storage
	12.2.2 Prevent Double Connections with SKI Comparison

	12.3 Verification Procedure
	12.3.1 Public Key Verification Modes
	12.3.1.1 Auto Accept
	12.3.1.2 User Verification
	12.3.1.3 Commissioning
	12.3.1.4 User Input

	12.3.2 Trust Level

	12.4 Symmetric Key
	12.5 SHIP Node PIN
	12.6 QR Code

	13 SHIP Data Exchange
	13.1 Introduction
	13.2 Terms and Definitions
	13.3 Protocol Architecture / Hierarchy
	13.3.1 Overview
	13.3.2 SHIP Message Exchange (SME), SME User
	13.3.3 SHIP Transport

	13.4 SHIP Message Exchange
	13.4.1 Basic Definitions and Responsibilities
	13.4.2 Basic Message Structure
	13.4.3 Connection Mode Initialisation (CMI)
	13.4.4 Connection Data Preparation
	13.4.4.1 Connection State "Hello"
	13.4.4.1.1 Basic Definitions
	13.4.4.1.2 Process Overview
	13.4.4.1.3 Process Details

	13.4.4.2 Connection State "Protocol handshake"
	13.4.4.2.1 Basic Definitions
	13.4.4.2.2 Compatibility Aspects
	13.4.4.2.3 Protocol Handshake Process

	13.4.4.3 Connection State "PIN Verification"
	13.4.4.3.1 Introduction (Informative)
	13.4.4.3.2 Basic Definitions
	13.4.4.3.3 Basic Rules
	13.4.4.3.4 Protection Against Brute Force Attempts
	13.4.4.3.5 Process Details
	13.4.4.3.5.1 PIN Requirement - Communicated PIN States
	13.4.4.3.5.2 Process States

	13.4.5 Connection Data Exchange
	13.4.5.1 General Rules
	13.4.5.2 Message "data"
	13.4.5.2.1 Purpose and Structure
	13.4.5.2.2 Extensibility Rules
	13.4.5.2.3 Element "header"
	13.4.5.2.4 Element "protocolId"
	13.4.5.2.5 Element "payload"
	13.4.5.2.6 Element "extension"

	13.4.6 Access Methods Identification
	13.4.6.1 Introduction
	13.4.6.2 Basic Definitions
	13.4.6.2.1 Process Details
	13.4.6.2.2 Recommendations

	13.4.7 Connection Termination
	13.4.7.1 Basic Definitions
	13.4.7.1.1 Process Overview
	13.4.7.1.2 Process Details

	14 Well-known protocolId

